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We present a systematic study of static solutions of the vacuum Einstein equations
with negative cosmological constant which asymptotically approach the general-
ized Kottler ~‘‘Schwarzschild–anti-de Sitter’’! solution, within ~mainly! a confor-
mal framework. We show connectedness of conformal infinity for appropriately
regular such spacetimes. We give an explicit expression for the Hamiltonian mass
of the ~not necessarily static! metrics within the class considered; in the static case
we show that they have a finite and well-defined Hawking mass. We prove in-
equalities relating the mass and the horizon area of the~static! metrics considered
to those of appropriate reference generalized Kottler metrics. Those inequalities
yield an inequality which is opposite to the conjectured generalized Penrose in-
equality. They can thus be used to prove a uniqueness theorem for the generalized
Kottler black holes if the generalized Penrose inequality can be established.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1340869#

I. INTRODUCTION

Consider the families of metrics
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2 , k50,61, ~I.1!

ds252~l2Lr 2!dt21~l2Lr 2!21 dr21uLu21 dVk
2 , k561, kL.0, lPR, ~I.2!

wheredVk
2 denotes a metric of constant Gauss curvaturek on a two-dimensional manifold2M .

~Throughout this work we assume that2M is compact.! These are well-known static solutions o
the vacuum Einstein equation with a cosmological constantL; some subclasses of~I.1! and ~I.2!
have been discovered by de Sitter1 @~I.1! with m50 andk51#, by Kottler2 @Eq. ~I.1! with an
arbitrarym andk51#, and by Nariai3 @Eq. ~I.2! with k51#. As discussed in detail in Sec. V D, th
parametermPR is related to the Hawking mass of the foliationt5const,r 5const. We will refer
to those solutions as the generalized Kottler and the generalized Nariai solutions. The conL
is an arbitrary real number, but in this paper we will mostly be interested inL,0, and this
assumption will be made unless explicitly stated otherwise. There has been recently re
interest in the black hole aspects of the generalized Kottler solutions.4–7 The object of this paper
is to initiate a systematic study of static solutions of the vacuum Einstein equations with a ne
cosmological constant.

The first question that arises here is that of asymptotic conditions one wants to impose.
present paper we consider metrics which tend to the generalized Kottler solutions, leavi
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asymptotically Nariai case to future work. We present the following three approache
asymptotic structure, and study their mutual relationships: three-dimensional conformal co
tifications, four-dimensional conformal completions, and a coordinate approach. We show
under rather natural hypotheses the conformal boundary at infinity is connected.

The next question we address is that of the definition of mass for such solutions,without
assuming staticityof the metrics. We review again the possible approaches that occur here: a
coordinate approach, a Hamiltonian approach, a ‘‘Komar-type’’ approach, and the Hawkin
proach. We show that the Hawking mass converges to a finite value for the metrics cons
here, and we also give conditions on the conformal completions under which the ‘‘coord
mass,’’ or the Hamiltonian mass, are finite. Each of those masses come with different norm
tion factor, whenever all are defined, except for the Komar and Hamiltonian masses which
cide. We suggest that the correct normalization is the Hamiltonian one.

Returning to the static case, we recall that appropriately behaved vacuum black hole
L50 are completely described by the parameterm appearing above,8–10 and it is natural to
enquire whether this remains true for other values ofL. In fact, forL,0, Boucher, Gibbons, and
Horowitz11 have given arguments suggesting uniqueness of the anti-de Sitter solution with
appropriate class. As a step towards a proof of a uniqueness theorem in the general case w
under appropriate hypotheses~1! lower bounds on~loosely speaking! the area of cross sections o
the horizon, and~2! upper bounds on the mass of static vacuum black holes with negative
mological constant. When these inequalities are combined the result goes precisely the o
way as a~conjectured! generalization of the Geroch–Huisken–Ilmanen–Penrose inequality12–17

appropriate to spacetimes with nonvanishing cosmological constant. In fact, such a genera
was obtained by Gibbons18 along the lines of Geroch,13 and of Jang and Wald,19 i.e., under the
very stringent assumption of the global existence and smoothness of the inverse mean cu
flow, see Sec. VI. We note that it is far from clear that the arguments of Huisken and Ilmane14,15

or those of Bray,16,17 which establish the original Penrose conjecture can be adapted to the
tion at hand. If this were the case, a combination of this inequality with the results of the pr
work would give a fairly general uniqueness result. In any case this part of our work demons
the usefulness of a generalized Penrose inequality, if it can be established at all.

To formulate our results more precisely, consider a static spacetime (M ,4g) which might—
but does not have to—contain a black hole region. In the asymptotically flat case there e
well-established theory~see Ref. 20, or Ref. 10, Secs. 2 and 6 and references therein! which, under
appropriate hypotheses, allows one to reduce the study of such spacetimes to the prob
finding all suitable triples (S,g,V), where (S,g) is a three-dimensional Riemannian manifold a
V is anon-negativefunction onS. FurtherV is required to vanish precisely on the boundary ofS,
when nonempty:

V>0, V~p!50⇔pP]S. ~I.3!

Finally g andV satisfy the following set of equations onS:

DV52LV, ~I.4!

Ri j 5V21DiD jV1Lgi j ~I.5!

(L50 in the asymptotically flat case!. HereRi j is the Ricci tensor of the~‘‘three-dimensional’’!
metric g. We shall not attempt to formulate the conditions on (M ,4g) which will allow one to
perform such a reduction@some of the aspects of the relationship between (S,g,V) and the
associated spacetime are discussed in Sec. III B#, but we shall directly address the question
properties of solutions of~I.4!–~I.5!. Our first main result concerns the topology of]S ~cf.
Theorem IV.1, Sec. IV; compare Refs. 21 and 22!:

Theorem I.1: Let L,0, consider a set (S,g,V) which is C3 conformally compactifiable in
the sense of Definition III.1 below, suppose that~I.3!–~I.5! hold. Then the conformal boundary a
infinity ]`S of S is connected.
loaded 11 Apr 2001 to 193.52.214.71. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Our second main result concerns the Hawking mass of the level sets ofV, cf. Theorem V.2,
Sec. V D:

Theorem I.2: Under the conditions of Theorem I.1, the Hawking massm of the level sets of
V is well defined and finite.

It is natural to enquire whether there exist static vacuum spacetimes with complete spa
hypersurfaces and no black hole regions; it is expected that no such solutions exist whenL,0
and]`SÞS2. We hope that points~2! and~3! of the following theorem can be used as a tool
prove their nonexistence.

Theorem I.3: Under the conditions of Theorem I.1, suppose further that]S5B, and that the
scalar curvatureR8 of the metricg85V22g is constant on]`S. Then

~1! If ]`S is a sphere, then the Hawking massm of the level sets ofV is nonpositive, vanishing
if and only if there exists a diffeomorphismc:S→S0 and a positive constantl such thatg
5c* g0 andV5lV0+c, with (S0 , g0 ,V0) corresponding to the anti-de Sitter space–time

~2! If ]`S is a torus, then the Hawking massm is strictly negative.
~3! If the genusg` of ]`S is higher than or equal to 2, we have

m,2
1

3A2L
, ~I.6!

with m5m(V) normalized as in Eq.~VI.7!.
A mass inequality similar to that in point~1! above has been established in Ref. 11, and in

we follow their technique of proof. However, our hypotheses are rather different. Further, the
here isa priori different from the one considered in Ref. 11; in particular it is not clear at
whether the mass defined as in Ref. 11 is also defined for the metrics we consider, cf. Sec
and V A below.

We note that metrics satisfying the hypotheses of point~2! above, with arbitrarily large
~strictly! negative mass, have been constructed in Ref. 23.

As a straightforward corollary of Theorem I.3 one has
Corollary I.4: Suppose that the generalized positive energy inequalitym>mcrit(g`) holds in

the class of three-dimensional manifolds (S,g) which satisfy the requirements of point~1! of
Definition III.1 with a connnected conformal infinity]`S of genusg` , and, moreover, the scala
curvatureR of which satisfiesR>2L. Then

~1! If mcrit(g`50)50, then the only solution of Eqs.~I.4!–~I.5! satisfying the hypotheses of poin
~1! of Theorem I.3 are data for anti-de Sitter space–time.

~2! If mcrit(g`.1)521/(3A2L), then there exist no solutions of Eqs.~I.4!–~I.5! satisfying the
hypotheses of point~3! of Theorem I.3.

When ]`S5S2 one expects that the inequalitym>0, with m being the mass defined b
spinorial identities can be established using Witten-type techniques~cf. Refs. 24 and 25!, regard-
less of whether or not]S5B. ~On the other hand, it follows from Ref. 26 that when]`SÞS2

there exist no asymptotically covariantly constant spinors which can be used in the Witten
ment.! This might require imposing some further restrictions on, e.g., the asymptotic behav
the metric. To be able to conclude in this case that there are no static solutions without ho
or that the only solution with a connected nondegenerate horizon is the anti-de Sitter one, re
working out those restrictions, and showing that the Hawking mass of the level sets ofV coincides
with the mass occuring in the positive energy theorem.

When horizons occur, our comparison results for mass and area read as follows.
Theorem I.5: Under the conditions of Theorem I.1, suppose further that the genusg` of ]`S

satisfiesg`>2, and that the scalar curvatureR8 of the metricg85V22g is constant on]`S. Let
]1S be any connected component of]S for which the surface gravityk defined by Eq.~VII.1! is
largest, and assume that
loaded 11 Apr 2001 to 193.52.214.71. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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0,k<A2
L

3
. ~I.7!

Let m0 , respectivelyA0 , be the Hawking mass, respectively the area of]S0 , for that generalized
Kottler solution (S0 ,g0 ,V0), with the same genusg` , the surface gravityk0 of which equalsk.
Then

m<m0 , A0~g]1S21!<A~g`21!, ~I.8!

whereA is the area of]1S and m5m(V) is the Hawking mass of the level sets ofV. Further
m5m0 if and only if there exists a diffeomorphismc:S→S0 and a positive constantl such that
g5c* g0 andV5lV0+c.

The asymptotic conditions assumed in Theorems I.3 and I.5 are somewhat related to th
Refs. 27–29, 11. The precise relationships are discussed in Secs. III B and III C. Let us s
mention here that the condition thatR8 is constant on]`S is the~local! higher genus analog of th
~global! condition in Refs. 28 and 29 that the group of conformal isometries of I coincides
that of the standard conformal completion of the anti-de Sitter space–time; the reader is re
to Proposition III.6 in Sec. III B for a precise statement.

We note that the hypothesis~I.7! is equivalent to the assumption that the generalized Kot
solution with the same value ofk has nonpositive mass; cf. Sec. II for a discussion. We emp
size, however, that we do not make anya priori assumptions concerning the sign of the mass
(S,g,V). Our methods do not lead to any conclusions for those values ofk which correspond to
generalized Kottler solutions with positive mass.

With m5m(V) normalized as in Eq.~VI.7!, the inequalitym<m0 takes the following explicit
form:

m<
~L12k2!Ak22L12k3

3L2 , ~I.9!

while A(g`21)>A0(g]1S21) can be explicitly written as

A~g`21!>4p~g]1S21!Fk1Ak22L

L G2

. ~I.10!

@The right-hand sides of Eqs.~I.9! and~I.10! are obtained by straightforward algebraic manipu
tions from ~II.1! and ~II.10!.#

It should be pointed out that in Ref. 30 a lower bound for the area has also been estab
However, while the bound there is sharp only for the generalized Kottler solutions withm50, our
bound is sharp for all Kottler solutions. On the other hand, in Ref. 30 it is not assumed th
space–time is static.

If the generalized Penrose inequality~which we discuss in some detail in Sec. VI! holds,

2MHaw~u!>(
i 51

k S ~12g] iS
!S A] iS

4p
D 1/2

2
L

3
S A] iS

4p
D 3/2D ~I.11!

~with the ] iS ’s, i 51,...,k, being the connected components of]S, the A] iS
’s—their areas, and

the g] iS
’s—the genera thereof! we obtain uniqueness of solutions:

Corollary I.6: Suppose that the generalized Penrose inequality~I.11! holds in the class of
three-dimensional manifolds (S,g) with scalar curvatureR satisfyingR>2L, which satisfy the
requirements of point~1! of Definition III.1 with a connnected conformal infinity]`S of genus
g`.1, and which have a compact connected boundary. Then the only static solutions o
~I.4!–~I.5! satisfying the hypotheses of Theorem I.5 are the corresponding generalized K
solutions.
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II. THE GENERALIZED KOTTLER SOLUTIONS

We recall some properties of the solutions~I.1!. Those solutions will be used as referen
solutions in our arguments, so it is convenient to use a subscript 0 when referring to the
already mentioned, we assumeL,0 unless indicated otherwise. Form0PR, let r 0 be the largest
positive root of the equation31

V0
2[k2

2m0

r
2

L

3
r 250. ~II.1!

We set

S05$~r ,v !ur .r 0 ,vP2M %, g05S k2
2m0

r
2

L

3
r 2D 21

dr21r 2 dVk
2 , ~II.2!

where, as before,dVk
2 denotes a metric of constant Gauss curvaturek on a smooth two-

dimensional compact manifold2M . We denote the corresponding surface gravity byk0 . @Recall
that the surface gravity of a connected component of a horizonN@X# is usually defined by the
equation

~XaXa! ,muN[X]522kXm , ~II.3!

where X is the Killing vector field which is tangent to the generators ofN@X#. This requires
normalizing X; here we impose the normalization32 that X5]/]t in the coordinate system o
~I.1!.# We set

W0~r ![g0
i j DiV0D jV05S m0

r 2 2
Lr

3 D 2

. ~II.4!

Whenm050 we note the relationship

W052
L

3
~V0

22k!, ~II.5!

which will be useful later on, and which holds regardless of the topology of2M .
Suppose, now, thatk521, and thatm0 is in the range

m0P@mcrit,0#, ~II.6!

where

mcrit[2
1

3A2L
. ~II.7!

Heremcrit is defined as the smallest value ofm0 for which the metrics~I.1! can be extended acros
a Killing horizon.5,7 Let us show that Eq.~II.6! is equivalent to

r 0PF 1

A2L
,A2

3

LG . ~II.8!

In order to simplify notation it is useful to introduce

1

l 2 [2
L

3
. ~II.9!
loaded 11 Apr 2001 to 193.52.214.71. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Now, the equationV0( l /))50 implies m5mcrit . Next, an elementary analysis of the functio
r 3/ l 22r 22m0 ~recall thatk521 in this section! shows that~1! V has no positive roots form
,mcrit ; ~2! for m5mcrit the only positive root isl /); ~3! if r 0 is the largest positive root of the
equationV0(r 0)50, then for eachm0.mcrit the radiusr 0(m0) exists and is a differentiable
function of m0 . Differentiating the equationr 0V0(r 0)50 with respect tom0 gives

S 3r 0
2

l 2 1kD ]r 0

]m0
5S 3r 0

2

l 2 21D ]r 0

]m0
52.

It follows that for r> l /) the function r 0(m0) is a monotonically increasing function on it
domain of definition@mcrit ,`), which establishes our claim.

We note that the surface gravityk0 is given by the formula

k05AW0~r 0!5
m0

r 0
2 1

r 0

l 2 , ~II.10!

which gives

]k0

]m0
5

1

r 0
2 1S 1

l 2 2
2m0

r 0
3 D ]r 0

]m0
.

Equation~II.10! shows thatk0 vanishes whenm05mcrit .
33 Under the hypothesis thatm0<0, it

follows from what has been said above~a! that ]k0 /]m0 is positive;~b! that we have

k0PF0,A2
L

3 G , ~II.11!

when ~II.6! holds, and~c! that, under the current hypotheses onk and L, ~II.6! is equivalent to
~II.11! for the metrics~I.1!. While this can probably be established directly, we note that it follo
from Theorem I.5 that~II.11! is equivalent to~II.6! without having to assume thatm0<0.

In what follows we shall need the fact that in the above ranges of parameters the relatio
V0(r ) can be inverted to define a smooth functionr (V0):@0,̀ )→R. Indeed, the equation
(dV0 /dr) (r crit)50 yields r crit

3 53m0 /L; when k521, L,0, and when~II.6! holds one finds
V0(r crit)<0, with the inequality being strict unlessm5mcrit . Therefore,V0(r ) is a smooth strictly
monotonic function in@r 0 ,`), which implies in turn thatr (V0) is a smooth strictly monotonic
function on (0,̀ ); further r (V0) is smooth up to 0 except whenm5mcrit .

III. ASYMPTOTICS

A. Three-dimensional formalism

As a motivation for the definition below, consider one of the metrics~I.1! and introduce a new
coordinatexP(0,x0# by

r 2

l 2 5
12kx2

x2 ~III.1!

with x0 defined by substitutingr 0 at the left-hand side of~III.1!. It then follows that

g5 l 2x22F ~12kx2!21S 12
2mx3

lA12kx2D 21

dx21~12kx2!dVk
2G .

Thus the metric
loaded 11 Apr 2001 to 193.52.214.71. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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g8[~ l 22x2!g

is smooth up to boundary metric on the compact manifold with boundaryS̄0[@0,x0#32M .

Furthermore,xV0 can be extended by continuity to a smooth up to boundary function onS̄0 , with
xV051. This justifies the following definition.

Definition III.1: Let S be a smooth manifold~all manifolds are assumed to be Hausdor
paracompact, and orientable throughout!, with perhaps a compact boundary which we denote
]S when non empty.34 Suppose thatg is a smooth metric onS, and thatV is a smooth nonnegative
function onS, with V(p)50 if and only if pP]S.

~1! (S,g) will be said to beCi , i PNø$`%, conformally compactifiable or, shortly, compactifi
able, if there exists aCi 11 diffeomorphismx from S\]S to the interior of a compact Rie

mannian manifold with boundary (S̄'Sø]`S,ḡ), with ]`SùS5B, and aCi function

v:S̄→R1 such that

g5x* ~v22ḡ!. ~III.2!

We further assume that$v50%5]`S, with dv nowhere vanishing on]`S, and thatḡ is of

Ci differentiability class onS̄.
~2! A triple (S,g,V) will be said to beCi , i PNø$`%, compactifiable if (S,g) is Ci compacti-

fiable, and ifVv extends by continuity to aCi function onS̄,
~3! with

lim
v→0

Vv.0. ~III.3!

We emphasize thatS itself is allowed to have a boundary on whichV vanishes,

]S5$pPSuV~p!50%

If that is the case we will have

]S̄5]Sø]`S.

The conditions above are not independent when the ‘‘static field equations’’@Eqs.~I.4!–~I.5!#
hold:

Proposition III.2: Consider a triple (S,g,V) satisfying Eqs.~I.3!–~I.5!.

~1! The condition thatudvu ḡ has no zeros on]`S follows from the remaining hypotheses of poi
1 of Definition III.1, when those hold withi>2.

~2! Suppose that (S,g) is Ci compactifiable withi>2. Then limv→0Vv exists. Further, one can
choose a~uniquely defined! conformal factor so thatv is theḡ distance from]`S. With this
choice of conformal factor, when~III.3! holds a necessary condition that (S,g,V) is Ci

compactifiable is that

~4R̄ij2R̄ḡij !n̄
in̄ju]`S50, ~III.4!

wheren̄ is the field of unit normals to]`S.
~3! (S,g,V) is C` compactifiable if and only if (S,g) is C` compactifiable and Eqs.~III.3! and

~III.4! hold.

Remarks:~1! When (S,g) is C` compactifiable but Eq.~III.4! does not hold, the proof below
shows thatVv is of the forma01a1v2 logv, for some smooth up-to-boundary functionsa0 and
a1 . This is perhaps not so surprising because the nature of the equations satisfied byg and V
loaded 11 Apr 2001 to 193.52.214.71. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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suggests that bothḡ and Vv should be polyhomogeneous, rather than smooth.~‘‘Polyhomoge-
neous’’ means thatḡ andVv are expected to admit asymptotic expansions in terms of powe
v and logv near]`S under some fairly weak conditions on their behavior at]`S; cf., e.g., Ref.
36 for precise definitions and related results.! From this point of view the hypothesis that (S,g) is
C` compactifiable is somewhat unnatural and should be replaced by that of polyhomogeneiḡ
at ]`S.

~2! One can prove appropriate versions of point~3! above for (S,g)’s which areCi compac-
tifiable for finite i . This seems to lead to lower differentiability of 1/V near]`S as compared to
ḡ, and for this reason we shall not discuss it here.

~3! We leave it as an open problem whether or not there exist solutions of~I.3!–~I.5! such that
(S,g) is smoothly compactifiable, such thatV can be extended by continuity to a smooth functi

on S̄, while ~III.3! does not hold.
~4! We note that~III.4! is a conformally invariant condition becausev and ḡ are uniquely

determined byg. However, it is not conformally covariant, in the sense that ifḡ is conformally
rescaled, then~III.4! will not be of the same form in the new rescaled metric. It would be
interest to find a form of~III.4! which does not have this drawback.

~5! The result above has counterparts for one-point compactifications in the asymptotica
case~cf., e.g., the theorem in the Appendix of Ref. 35.!

Proof: Let a[Vv. After suitable identifications we can without loss of generality assume
the mapx in ~III.2! is the identity. Equations~I.4!–~I.5! together with the definition ofḡ5v2g
lead to the following:

D̄a23
D̄ ivD̄ ia

v
1S D̄v

v
1

R̄

2
Da50, ~III.5!

D̄ i D̄ ja2
D̄kvD̄ka

v
ḡi j 5S R̄i j 12

D̄ i D̄ jv

v
2S D̄v

v
1

R̄

2
D ḡi j Da. ~III.6!

We have also usedR52L which, together with the transformation law of the curvature sca
under conformal transformations, implies

v2R̄56udvu ḡ
212L24vD̄v. ~III.7!

In all the equations here barred quantities refer to the metricḡ. Point~1! of the proposition follows
immediately from Eq.~III.7!.

To avoid factors of2L/3 in the remainder of the proof we rescale the metricg so thatL
523. Next, to avoid annoying technicalities we shall present the proof only for smoothly c
pactifiable (S,g), i.e., for i 5`; the finite i cases can be handled using the results in Ref.
Appendix A and Ref. 37, Appendix A. Suppose, thus, thati 5`. As shown in Ref. 38, Lemma 2.1
we can choosev and ḡ so thatv coincides with theḡ distance from]`S in a neighborhood of
]`S; we shall use the symbolx to denote this function. In this case we have

D̄v5 p̄, ~III.8!

wherep̄ is the mean curvature of the level sets ofv5x. Furtherudvu ḡ51 so that~III.8! together
with ~III.7! give R̄524p̄/x, in particularp̄ux5050. We can introduce Gauss coordinates (x1,xA)
near]`S in which x15xP@0,x0), while the (xA)5v ’s form local coordinates on]`S, with the
metric taking the form

ḡ5dx21h̄, h̄~]x ,• !50. ~III.9!

To prove point~2!, from Eq. ~III.6! we obtain
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vD̄ ivD̄ jvD̄ i~v21D̄ ja!5D̄ ivD̄ jvS R̄i j 12
D̄ i D̄ jv

v
2S D̄v

v
1

R̄

2
D ḡi j Da. ~III.10!

Equations~III.8!–~III.10! lead to

x]x~x21]xa!5S R̄xx2
R̄

4
Da. ~III.11!

At eachvP]`S this is an ODE of Fuchsian type fora(x,v). Standard results about such equ
tions show that for eachv the functionsx→a(x,v) andx→]xa(x,v) are bounded and continuou
on @0,x0). Integrating~III.11! one finds

]xa5xb~v !1S R̄xx2
R̄

4
Da~0,v !x ln x1O~x2 ln x!, ~III.12!

whereb(v) is a (v-dependent! integration constant. By hypothesis there exist no points at]`S
such thata(0,v)50, Eqs.~III.11! and~III.12! show that]x

2a blows up atx50 unless~III.4! holds,
and point~2! follows.

We shall only sketch the proof of point~3!: Standard results about Fuchsian equations sh
that solutions of Eq.~III.11! will be smooth in x whenever@R̄xx2 (R̄/4)#(x50,v) vanishes
throughout]`S. A simple bootstrap argument applied to Eq.~III.6! with ( i j )5(1A) shows that
a is also smooth inv. Commuting Eq.~III.6! with (x]x)

i]v
b , whereb is an arbitrary multi-index,

and iteratively repeating the reasoning outlined above establishes smoothness ofa jointly in v and
x. h

A consequence of condition~3! of Definition III.1 is that the function

V8[V21,

when extended toS̄ by settingV850 on ]`S, can be used as a compactifying conformal fact
at least away from]S: If we set

g85V22g,

then g8 is a Riemannian metric smooth up to boundary onS̄\]S. In terms of this metric Eqs
~I.4!–~I.5! can be rewritten as

D8V853V8W1LV, ~III.13!

Ri j8 522VDi8D j8V8. ~III.14!

HereRi j8 is the Ricci tensor of the metricg8, D8 is the Levi-Civita covariant derivative associate
with g8, while D8 is the Laplace operator associated withg8. Taking the trace of~III.14! and
using ~III.13! we obtain

R8526W22LV2, ~III.15!

where

W[DiVDiV. ~III.16!

Defining

W8[g8 i j Di8V8D j8V85~V8!2W, ~III.17!
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Eq. ~III.15! can be rewritten as

6W8522L2R8~V8!2. ~III.18!

If ( S,g,V) is C2 compactifiable thenR8 is bounded in a neighborhood of]`S, and sinceV blows
up at ]`S it follows from Eq. ~III.15! that so doesW, in particularW is strictly positive in a
neighborhood of]`S. Further Eq.~III.18! implies that the level sets ofV are smooth manifolds in
a neighborhood of]`S, diffeomorphic to]`S there.

Equations~I.4!–~I.5! are invariant under a rescalingV→lV, lPR* . This is related to the
possibility of choosing freely the normalization of the Killing vector field in the associated sp
time. Similarly the conditions of Definition III.1 are invariant under such rescalings withl.0.
For various purposes—e.g., for the definition~VII.1! of surface gravity—it is convenient to hav
a unique normalization ofV. We note that if (S,g,V) corresponds to a generalized Kottl
solution (S0 ,g0 ,V0), then ~I.1! and ~II.4! together with~III.16! give 6W08522L(12k(V08)

2)
1O((V08)

3) so that from~III.15! one obtains

R08u]`S522Lk. ~III.19!

We have the following:
Proposition III.3: Consider aCi-compactifiable triple (S,g,V), i>3, satisfying equations

~I.4!–~I.5!.

~1! We have
2R8ux505 1

3 R8ux50 , ~III.20!

where2R8 is the scalar curvature of the metric induced byg8[V22g on the level sets ofV,
andR8 is the Ricci scalar ofg8.

~2! If R8 is constant on]`S, replacingV by a positive multiple thereof if necessary we c
achieve

R8u]`S522Lk, ~III.21!

wherek50, 1 or21 according to the sign of the Gauss curvature of the metric induced bg8
on ]`S.

Remark:Whenk50 Eq. ~III.21! holds with an arbitrary normalization ofV.

Proof: Consider a level set$V5const% of V which is a smooth hypersurface inS̄, with unit
normal ni , induced metrichi j , scalar curvature2R, second fundamental formpi j defined with
respect to an inner pointing normal, mean curvaturep5hi j pi j 5hi

khj
mD (knm) ; we denote byqi j the

trace-free part ofpi j : qi j 5pi j 21/2hi j p. Let Ri jk , respectively,Ri jk8 , be the Cotton tensor of the
metric gi j , respectively,gi j8 ; by definition

Ri jk52~Ri [ j2
1
4 Rgi [ j ! ;k] , ~III.22!

where square brackets denote antisymmetrization with an appropriate combinatorial factor~1/2 in
the equation above!, and a semicolon denotes covariant differentiation. We note the useful ide
due to Lindblom39

Ri jk8 R8 i jk5V6Ri jkRi jk58~VW!2qi j q
i j 1V2hi j DiWDjW. ~III.23!

When (S,g,V) is C3 compactifiable the functionRi jk8 R8 i jk is uniformly bounded on a neighbor

hood of S̄, which gives

~VW!2qi j q
i j <C ~III.24!

in that same neighborhood, for some constantC. Equations~III.24! and ~III.17! give
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uqug5O~~V8!3!. ~III.25!

Let qi j8 be the trace-free part of the second fundamental formpi j8 of the level sets ofV8 with
respect to the metricgi j8 , defined with respect to an inner pointing normal; we haveqi j8 5qi j /V, so
that

uq8ug85O~~V8!2!. ~III.26!

Throughout we useu•uk to denote the norm of a tensor field with respect to a metrick.
Let us work out some implications of~III.26!; Eqs.~III.13!–~III.15! lead to

S D81
R8

2 DV850. ~III.27!

Equations~III.17! and~III.18! show thatdV8 is nowhere vanishing on a suitable neighborhood
]`S. We can thus introduce coordinates there so thatV85x. If the remaining coordinates are Li
dragged along the integral curves of]x the metric takes the form

g85~W8!21 dx21h8, h8~]x ,• !50. ~III.28!

Equations~III.27!–~III.28! give then

p852
1

2AW8
S ]W8

]x
1R8xD5

x

12AW8
S 4R82x

]R8

]x D , ~III.29!

and in the second step we have used~III.18!. Here p85AW8]x(Adeth8)/Adeth8 is the mean
curvature of the level sets ofx measured with respect to the inner pointing normaln85AW8]x .
Equation~III.14! implies

Ri j8 n8 in8 j522Vn8 in8 jDi8D j8V8522
D8 iV8D8 jV8

V8W8
Di8D j8V852

D8 iV8Di8W8

V8W8
5

2]xW8

x

in the coordinate system of Eq.~III.28!. From ~III.18! we get

Ri j8 n8 in8 j5
R8

3
1O~x!. ~III.30!

From the Codazzi–Mainardi equation,

~22Ri j8 1R8gi j8 !n8 in8 j52R81qi j8 q8 i j 2 1
2 p82, ~III.31!

where2R8 is the scalar curvature of the metric induced byg8 on ]`S, one obtains

~22Ri j8 1R8gi j8 !n8 in8 j52R81O~x!, ~III.32!

where we have used~III.26! and~III.29!. This, together with Eq.~III.30!, establishes Eq.~III.20!.
In particularR8u]`S is constant if and only if2R8 is, andR8 at x50 has the same sign as th
Gauss curvature of the relevant connected component of]`S. Under a rescalingV→lV, l.0,
we haveW→l2V; Eq. ~III.15! shows thatR8→l2R8, and choosingl appropriately establishe
the result. h

We do not know whether or not there exist smoothly compactifiable solutions of Eqs.~I.4!–
~I.5! for which R8 is not locally constant at]`S, it would be of interest to settle this question
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B. Four-dimensional conformal approach

Consider a space–time (M ,4g) of the formM5R3S with the metric4g

4g52V2 dt21g, g~] t ,• !50, ] tV5] tg50. ~III.33!

By definition of a space–time4g has Lorentzian signature, which implies thatg has signature13;
it then naturally defines a Riemannian metric onS which will still be denoted byg. Equations
~I.4!–~I.5! are precisely the vacuum Einstein equations with cosmological constantL for the
metric 4g. It has been suggested that an appropriate28,29 framework for asymptotically anti-de
Sitter space–times is that of conformal completions introduced by Penrose.40 The work of
Friedrich41 has confirmed that it is quite reasonable to do that, by showing that a large cla
space–times~not necessarily stationary! with the required properties exist; some further rela
results can be found in Refs. 42 and 43. In this approach one requires that there exists a
time with boundary (M̄ ,4ḡ) and a positive functionV:M̄→R1, with V vanishing precisely at
I,]M̄ , and withdV without zeros onI , together with a diffeomorphismJ:M→M̄ \I such that

4g5J* ~V22 4ḡ!. ~III.34!

The vector fieldX5] t is a Killing vector field for the metric~III.33! on M , and it is well known
~cf., e.g., Ref. 44, Appendix B! thatX extends as smoothly as the metric allows toI ; we shall use
the same symbol to denote that extension. We have the following trivial observation.

Proposition III.4: Assume that (S,g,V) is smoothly compactifiable, thenM5R3S with the
metric ~III.33! has a smooth conformal completion withI diffeomorphic toR3]`S. Further
(M ,4g) satisfies the vacuum equations with a cosmological constantL if and only if Eqs.~I.4!–
~I.5! hold.

The implication the other way around requires some more work.
Theorem III.5: Consider a space–time (M ,4g) of the formM5R3S, with a metric4g of

the form ~III.33!, and suppose that there exists a smooth conformal completion (M̄ ,4ḡ) with
nonemptyI . Then

~1! X is timelike onI ; in particular it has no zeros there;
~2! The hypersurfacest5const extend smoothly toI ;
~3! (S,g,V) is smoothly compactifiable;
~4! there exists a~perhaps different! conformal completion of (M ,4g), still denoted by (M̄ ,4ḡ),

such thatM̄5R3S̄, where (S̄,ḡ) is a conformal completion of (S,g), with X5] t and with

4ḡ52a2 dt21ḡ, ḡ~] t ,• !50, X~a!5LXḡ50. ~III.35!

Remark:The new completion described in point~4! above will coincide with the original one
if and only if the orbits ofX are complete in the original completion.

Proof: As the isometry group mapsM to M , it follows thatX has to be tangent toI . On M
we have4ḡ(X,X).0 hence4ḡ(X,X)>0 on I , and to establish point~1! we have to exclude the
possibility that4ḡ(X,X) vanishes somewhere onI .

Suppose, first, thatX(p)50 for a pointpPI . ClearlyX is a conformal Killing vector of4ḡ.
We can choose a neighborhoodU of I so thatX is strictly timelike onU\I . There existse.0 and
a neighborhoodO,U of p such that the flowf t(q) of X is defined for allqPO and t
P@2e,e#. Thef t’s are local conformal isometries, and therefore map timelike vectors to time
vectors. SinceX vanishes atp the f t’s leave p invariant. It follows that thef t’s map causal
curves throughp into causal curves throughp; therefore they map]J1(p) into itself. This implies
that X is tangent to]J1(p). However this last set is a null hypersurface, so that every ve
tangent to it is spacelike or null, which contradicts timelikeness ofX on ]J1(p)ùUÞB. It
follows thatX has no zeros onI .
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Suppose, next, thatX(p) is lightlike at p. There exists a neighborhood ofp and a strictly
positive smooth functionc such thatX is a Killing vector field for the metric4ḡc2. Now the
staticity condition

X[a¹bXg]50 ~III.36!

is conformally invariant, and therefore also holds in the4ḡ metric. We can thus use the Carter
Vishweshvara lemma45,46to conclude that the setN5$qPM̄ uX(q)Þ0%ù]$4ḡ(X,X),0%ÞB is a
null hypersurface. By hypothesis there exists a neighborhoodU of I in M̄ such thatNùMùU
5B, henceN,I . This contradicts the fact40 that the conformal boundary of a vacuum spac
time with a strictly negative cosmological constantL is timelike. It follows thatX cannot be
lightlike on I either, and point~1! is established.

To establish point~2!, we note that Eq.~III.36! together with point~1! show that the one-form

l[
1

4ḡabXaXb
4ḡmnXm dxn

is a smooth closed one-form on a neighborhoodO of I , hence on any simply connected ope
subset ofO there exists a smooth functiont̄ such thatl5d t̄. Now ~III.33! shows that the
restriction ofl to M is dt, which establishes our claim. From now on we shall drop the bar ot̄ ,
and writet for the corresponding time function onM̄ .

Let

S̄5M̄ù$t50%, x5Ju t50 , v5Vu t50 ,

whereJ andV are as in~III.34!; from Eq. ~III.34! one obtains

g5x* ~v22ḡ!,

which shows that (S̄,ḡ) is a conformal completion of (S,g). We further haveV2v2

54g(X,X)u t50v254ḡ(X,X)u t50 , which has already been shown to be smoothly extendible toI 1

and strictly positive there, which establishes point~3!.

There exists a neighborhoodV of S̄ in M̄ on which a new conformal factorV can be defined
by requiringVu t505v, X(V)50. Redefining4ḡ appropriately and making suitable identificatio
so thatJ is the identity, Eq.~III.34! can then be rewritten onV as

4ḡ52~VV!2 dt21V2g. ~III.37!

All the functions appearing in Eq.~III.37! are time independent. The new manifoldM̄ defined as

S̄3R with the metric~III.37! satisfies all the requirements of point~4!, and the proof is com-
plete. h

In addition to the conditions described above, in Refs. 28 and 29 it was proposed to f
restrict the geometries under consideration by requiring the group of conformal isometriesI to
be the same as that of the anti-de Sitter space–time, namely the universal covering gr
O(2,3); cf. also Ref. 43 for further discussion. While there are various ways of adapting
proposal to our setup, we simply note that the requirement on the group of conformal isom
to beO(2,3) or a covering thereof implies that the metric induced onI is locally conformally flat.
Let us then see what are the consequences of the requirement of local conformal flatnessIg in
our context; this last property is equivalent to the vanishing of the Cotton tensor of the metIg
induced by4ḡ on I . As has been discussed in detail in Sec. III A, we can choose the confo
factor V to coincide withV21, in which case Eq.~III.37! reads

4g8[4g/V252dt21V22g52dt21g8, ~III.38!
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with g8[V22g already introduced in Sec. III A. It follows that

Ig[4g8u I52dt21h8, ~III.39!

whereh8 is the metric induced on]`S[I ùS̄ by g8. Let IRi j denote the Ricci tensor ofIg; from
~III.39! we obtain

IRit50, IRAB52RAB , ~III.40!

where2RAB is the Ricci tensor ofh8. In particular thexxA component of the Cotton tensorIRi jk

of Ig satisfies

IRxxA52
2R,A

4
.

Point ~1! of Proposition III.3, see Eq.~III.20!, shows that the requirement of conformal flatness
Ig implies thatR8 is constant on]`S. Conversely, it is easily seen from~III.40! that a locally
constantR8—or equivalently2R—on ]`S implies the local conformal flatness ofIg. We have
therefore proved:

Proposition III.6:Let (S,g,V) beCi conformally compactifiable,i>3, and satisfy~I.3!–~I.5!.
The conformal boundaryR3]`S of the space–time (M5R3S,4g), 4g given by ~III.33!, is
locally conformally flat if and only if the scalar curvatureR8 of the metricV22g is locally
constant on]`S. This is equivalent to requiring that the metric induced byV22g on ]`S has
locally constant Gauss curvature.

C. A coordinate approach

An alternative approach to the conformal one discussed above is by introducing pre
coordinate systems. As discussed in Ref. 27, Appendix D, coordinate approaches are often
lent to conformal approaches when sufficiently strong hypotheses are made. We stress t
equivalence is a delicate issue when finite degrees of differentiability are assumed, as arg
leading from one approach to the other often involve constructions in which some differentia
is lost.

In any case, the coordinate approach has been used by Boucher, Gibbons, and Horow11 in
their argument for uniqueness of the anti-de Sitter metric within a certain class of static s
times. More precisely, in Ref. 11 one considers metrics which are asymptotic to gener
Kottler metrics withk51 in the following strong sense: ifg0 denotes one of the metrics~I.1! with
k51, then one assumes that there exists a coordinate system (t,r ,xA) such that

g5g01O~r 22!dt21O~r 26!dr21O~r ! ~remaining differentials not involvingdr !

1O~r 21! ~remaining differentials involvingdr !. ~III.41!

We note that in the uniqueness assertions of Ref. 11 one makes appeal to the positive
theorem to conclude. Now we are not aware of a version of such a theorem which would
without some further hypotheses on the behavior of the metric. For example, in such a th
one is likely to require that the derivatives of the metric also fall off at some sufficiently high r
In any case the argument presented in Ref. 11 seems to implicitly assume that the asy
behavior ofgtt described above is preserved under differentiation, so that the corrections ter
~III.41! give a vanishing contribution when calculatingudVug

22udV0ug0

2 and passing to the limit

r→`, with g0—the anti-de Sitter metric. While it might well be possible that Eqs.~I.4!–~I.5!
force the metrics satisfying~III.41! to have sufficiently good asymptotic properties to be able
justify this, or to apply a positive energy theorem,47 this remains to be established.48

It is far from being clear whether or not a general metric of the form~III.41! has any
well-behaved conformal completions. For example, the coordinate transformation~III.1! together
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with a multiplication by the square of the conformal factorv5x brings the metric~III.41! to one
which can be continuously extended to the boundary, but if only~III.41! is assumed then the
resulting metric will not be differentiable up to boundary on the compactified manifold in gen
There could, however, exist coordinate systems which lead to better conformal behavior
Eqs.~I.4!–~I.5! are imposed.

In any case, it is natural to ask whether or not a metric satisfying the requirements o
III A will have a coordinate representation similar to~III.41!. A partial answer to this question i
given by the following result; see Ref. 27 for a related discussion. While the conclusions in
27 appear to be weaker than ours, it should be stressed that in Ref. 27 staticity of the space
under consideration is not assumed.

Proposition III.7: Let (S,g,V) be a Ci compactifiable solution of Eqs.~I.4!–~I.5!, i>3.
Define aCi 22 function k̃5 k̃(xA) on ]`S by the formula

R8u]`S522L k̃. ~III.42!

~1! RescalingV by a positive constant if necessary, there exists a coordinate system (r ,xA) near
]`S in which we have

V25
r 2

l 2 1 k̃, ~III.43!

g5S r 2

l 2 1 k̃2
2m

r D 21

dr21O~r 23!dr dxA1r 2ȟAB1O~r 21!)dxA dxB ~III.44!

~recall thatl 2523L21), for somer -independent smooth two-dimensional metricȟAB with Gauss
curvature equal tok̃ and for some functionm5m(r ,xA). Further

ȟABgAB52S r 22
m`

r
1O~r 22! D , ~III.45!

whereȟAB denotes the matrix inverse toȟAB while

m`[ lim
r→`

m5
l 3

12

]R8

]x U
x50

. ~III.46!

~2! If one moreover assumes thatR8 is locally constant on]`S, then Eq.~III.44! can be improved
to

g5Sr2

l2
1k2

2m

r D21

dr21~r2ȟAB1O~r21!!dxA dxB, ~III.47!

with ȟAB having constant Gauss curvaturek50,61 according to the genus of the connect
component of]`S under consideration.

Remarks:~1! The function (x,xA)→m(r 51/x,xA) is of differentiability classCi 23 on S̄, with

the function (x,xA)→(m/r )(r 51/x,xA) being of differentiability classCi 22 on S̄.
~2! In Eqs.~III.44! and ~III.47! the error termsO(r 2 j ) satisfy
loaded 11 Apr 2001 to 193.52.214.71. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



amil-

f Eq.
we

re

f

n

1794 J. Math. Phys., Vol. 42, No. 4, April 2001 P. T. Chruściel and W. Simon
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] r
s]A1

¯]At
O~r 2 j !5O~r 2 j 2s!

for 0<s1t< i 23.
~3! We emphasize that the functionk̃ defined in Eq.~III.42! could a priori be xA dependent.

In such a case neither the definition of coordinate mass of Sec. V A nor the definition of H
tonian mass of Sec. V B apply.

~4! It seems that to be able to obtain~III.41!, in addition to the hypothesis thatR8 is locally
constant on]`S one would at least need the quantity appearing at the right-hand side o
~III.46! to be locally constant on]`S as well. We do not know whether this is true in general;
have not investigated this question as this is irrelevant for our purposes.

Proof: Consider, near]`S, the coordinate system of Eq.~III.28!, from Eqs. ~III.29! and
~III.18! we obtain

]x~ ln AdethAB8 !522k̃x2
3m`

l
x21O~x3!, ~III.48!

l as in ~II.9!, k̃ as in ~III.42!, m` as in ~III.46!. This, together with Eq.~III.26!, leads to

]hAB8

]x
522xk̃hAB8 1O~x2!⇒hAB8 5~12 k̃x2!l 2ȟAB1O~x3!,

whereȟAB[ (1/l 2) hAB8 ux50 . Proposition III.3 shows thatk̃ is proportional to the Gauss curvatu
of ȟAB . It follows now from ~III.18! that

g5x22g85
l 2

x2S 12
R8l 2x2

6 D 21

dx21H ~12 k̃x2!

x2 hAB8 ux501O~x3!J dxA dxB.

The above suggests to introduce a coordinater via the formula49

r 2

l 2 5
12 k̃x2

x2 . ~III.49!

Suppose, first, thatk̃ is locally constant on]`S, thenk̃ equalsk50,61 according to the genus o
the connected component of]`S under consideration, and one finds

g5S r 2

l 2 1kD 21H 11
l 2

r 2 S k2
R8l 2x2

6 D J 21

dr21S r 2

l 2 hAB8 ux501O~r 21! DdxA dxB

5S r 2

l 2 1k2
2m

r D 21

dr21S r 2

l 2 hAB8 ux501O~r 21! DdxA dxB,

where the ‘‘mass aspect’’ functionm5m(r ,xA) is defined as

m[2
r

2 S 11k
l 2

r 2D S k2
R8l 2x2

6 D52
r

2 S k2
R8l 2

6
1

k2l 2

r 2 D5
rl 2

2 S 1

6
~R82R8ux50!2

k2

r 2D .

~III.50!

This establishes Eqs.~III.43! and~III.47!. Whenk̃ is not locally constant an identical calculatio
using the coordinater defined in Eq.~III.49! establishes Eq.~III.44!—the only difference is the
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occurrence of nonvanishing error terms in thedr dxA part of the metric, introduced by the ang
dependence ofk̃. It follows from Eq.~III.50!—or from thek̃ version thereof whenk̃ is not locally
constant—that

m5
l 3

12

]R8

]x U
x50

1O~r 21!,

which establishes Eq.~III.46!. Equation~III.45! is obtained by integration of Eq.~III.48!. h

IV. CONNECTEDNESS OF ­`S

The class of manifolds considered so far could in principle containS’s for which neither]`S
nor ]S are connected. Under the hypothesis of staticity the question of connectedness o]S is
open; we simply note here the existence of dynamical~nonstationary! solutions of Einstein–
Maxwell equations with a nonconnected black hole region with positive cosmological con
L.50,51 As far as]`S is concerned, we have the following:

Theorem IV.1: Let (S,g,V) be aCi compactifiable solution of Eqs.~I.4!–~I.5!, i>3. Then
]`S is connected.

Proof: Consider the manifoldM5R3S with the metric~III.33!; its conformal completion

M̄5R3S̄ with the metric4g/V2 is a stably causal manifold with boundary. We wish to show t
it is also globally hyperbolic in the sense of Ref. 4, namely that~1! it is strongly causal and~2! for
eachp,qPM the setJ1(p)ùJ2(q) is compact. The existence of the global time functiont
clearly implies strong causality, so it remains to verify the compactness condition. Now a
G(s)5(t(s),g(s))PR3S is an achronal null geodesic fromp5(t(0),g(0)) to q
5(t(1),g(1)) if and only if g(s) is a minimizing geodesic betweeng(0) and g(1) for the
‘‘optical metric’’ V22g. Compactness ofJ1(p)ùJ2(q) is then equivalent to compactness of t
V22g distance balls; this latter property will hold when (Sø]`S,V22g) is a geodesically com-
plete manifold~with boundary! by ~an appropriate version of! the Hopf–Rinow theorem.

Let us thus show that (S,V22g) is geodesically complete. Suppose, first, that]S5B; the
hypothesis thatS has compact interior together with the fact thatV tends to infinity in the
asymptotic regions implies thatV>V0.0 for some constantV0 . This shows that (S,V22g) is a
compact manifold with boundary]`S, and the result follows.~When the metric induced byV22g
on ]`S has positive scalar curvature connectedness of]`S can also be inferred from Ref. 21.!

Consider, next, the case]SÞB. It is well known thatudVug is a nonzero constant on ever
connected component of]S @cf. the discussion around Eq.~VII.2!#; therefore we can introduce
coordinates near]S so thatV5x, with the metric taking the form

V22g5x22~~dx!21hAB~x,xA!dxA dxB!, ~IV.1!

where thexA’s are local coordinates on]S. It is elementary to show now from~IV.1! that
(Sø]`S,V22g) is a complete manifold with boundary, as claimed.

When (S,g) is smoothly compactifiable we can now use Theorem 2.1 of Ref. 4 to i
connectedness of]`S, compare Ref. 22, Corollary, Sec. III. For compactifications with fin
differentiability we argue as follows: For smalls let l be the mean curvature of the se
$x5s%, wherex is the coordinate of Eq.~III.9!. In the coordinate system used there the u
normal to those sets pointing away from]`S equalsx]x ; if ( S,g,V) is C3 compactifiable the
tensor fieldh̄ appearing in Eq.~III.9! will be C1 so that52

l5
1

Adetg
] i~Adetgni !5

x3

Adeth̄
]x~x22Adeth̄!5221O~x!.

It follows that for s small enough the sets$x5s,t5t% are trapped, with respect to the inwa
pointing normal, in the space–timeR3S with the metric~III.33!. Suppose that]`S were not
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connected, then those~compact! sets would be outer trapped with respect to every other conne
component of]`S. This is, however, not possible by the usual global arguments, cf., e.g.,
53 and 54 or Ref. 37, Sec. 4 for details. h

V. THE MASS

A. A coordinate mass Mc

There exist several proposals how to assign a massM to a space–time which is asymptotic
an anti-de Sitter space–time.27,29,55,18,56It seems that the simplest way to do that~as well as to
extend the definition to the generalized Kottler context considered here! proceeds as follows
consider a metric defined on a coordinate patch covering the set

Sext[$t5t0 ,r>R,~xA!P2M % ~V.1!

~which we will call an ‘‘end’’!, and suppose that in this coordinate system the functionsgmn are
of the form ~I.1! plus lower order terms

gtt52S k2
2m

r
2

L

3
r 2D1

o~1!

r
, grr 5S k2

2m

r
2

L

3
r 21

o~1!

r D 21

,

~V.2!
gtm5o~1!, mÞt, grm5o~1!, mÞr , gAB2r 2hAB5o~r 2!,

for some constantm, and for some constant curvature (t andr independent! metric hAB dxA dxB

on 2M . Then we define the coordinate massMc of the endSext to be the parameterm appearing
in ~I.1!. This procedure gives a unique prescription of how to assign a mass to a metric
coordinate system onSext.

There is an obvious coordinate dependence in this definition whenk50: Indeed, in that case
a coordinate transformationr→lr , t→t/l, dVk

2→l22 dVk
2 , wherel is a positive constant, doe

not change the asymptotic form of the metric, whilem gets replaced byl23m. When 2M is
compact this freedom can be removed, e.g., by requiring that the area of2M with respect to the
metric dVk

2 be equal to 4p, or to 1, or to some other chosen constant. Fork561 this ambiguity
does not arise because in this case such rescalings will change the asymptotic form of the
and are therefore not allowed.

It is far from being clear that the above definition will assign the same parameterMc to every
coordinate system satisfying our requirements: if that is the case, to prove such a statem
might perhaps need to further require that the coordinate derivatives of the coordinate comp
of g in the above described coordinate system have some appropriate decay properties; furt
might perhaps have to replace theo(1)’s by o(r 2s)’s or O(r 2s)’s, for some appropriates’s,
perhaps as in~III.41!; this is however irrelevant for our discussion at this stage.

A possible justification of this definition proceeds as follows: when2M5S2 andL50 it is
widely accepted that the mass ofSext equalsm, becausem corresponds to the active gravitation
mass of the gravitational field in a quasi-Newtonian limit.~It is also known in this case that th
definition is coordinate independent.57,58! For LÞ0 and/or 2MÞS2 one callsm the mass by
analogy.

Consider, then, the metric~III.33!, with V andg as in ~III.43!–~III.44!; suppose further tha
the limit

m`[ lim
r→`

m

exists and is a constant. To achieve the form of the metric4g just described one needs to repla
the coordinater of ~III.43!–~III.44! with a new coordinater defined as

r 21k5r21k1
m`

r
.
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This leads to

4g52S r2

l 2 1k1
m`

r Ddt21S r2

l 2 1k1
m`

r
1OS 1

r2D D 21

dr2

1O~r23!dr dxA1~r2ȟAB1O~r21!!dxA dxB, ~V.3!

and therefore

Mc[2
m`

2
52

l 3

24

]R8

]x U
x50

, ~V.4!

where the second equality above follows from~III.46!. We note that the approach described abo
does not give a definition of mass when limr→`m does not exist, or is not a constant function
]`S.

The above described dogmatic approach suffers from various shortcomings. First, wh2M
ÞS2, the arguments given are compatible withMc being any functionMc(m,L) with the property
that Mc(m,0)5m. Next, the transition fromLÞ0 to L50 has dramatic consequences as far
global properties of the corresponding space–times are concerned, and one can argue tha
no reason why the functionMc(m,L) should be continuous at zero. For example, according
Ref. 27, Eq.~III.8c!, the mass of the metric~I.1! with 2M5S2 should be 16pml, with l as in
~II.9!, which blows up whenL tends to zero withm being held fixed. Finally, when2MÞS2 the
Newtonian limit argument does not apply because the metrics~I.1! with L50 and2MÞS2 do not
seem to have a Newtonian equivalent. In particular there is no reason whyMc should not depend
upon the genusg` of 2M as well.

All the above arguments make it clear that a more fundamental approach to the definit
mass would be useful. It is common in field theory to define energy by Hamiltonian methods
this is the approach we shall pursue in the next section.

B. The Hamiltonian mass MHam

The Hamiltonian approach allows one to define the energy from first principles. For a so
of the field equations, we can simply take as the energy the numerical value of the Hamilt
It must be recognized, however, that the Hamiltonians might depend on the choice of the
space, if several such choices are possible, and they are defined only up to an additive con
each connected component of the phase space. They also depend on the choice of the Ham
structure, if more than one such structure exists.

Let us start by briefly recalling the results of the analysis of Ref. 59, based on the Hamilt
approach of Kijowski and Tulczyjew,60,61 see also Ref. 62. One assumes that a manifoldM on
which an~unphysical! background metricb is given, and one considers metrics4g which asymp-
tote tob in the relevant asymptotic regions ofM . We stress that the background metric is only
tool to prescribe the asymptotic boundary conditions, and does not have any physical signifi
Let X be any vector field onM and letS be any hypersurface inM . By a well known procedure
the motion ofS along the flow ofX can be used to construct a Hamiltonian dynamical system
an appropriate phase space of fields overS; the reader is referred to Refs. 60–63 for a geome
approach to this question. In Ref. 59 it is also assumed thatX is a Killing vector field of the
background metric; this is certainly not necessary~cf., e.g., Ref. 63 for general formulas!, but is
sufficient for our purposes, as we are going to takeX to be equal to]/]t in the coordinate system
of Eq. ~III.33!. In the context of metrics which asymptote to the generalized Kottler metric
large r , a rigorous functional description of the spaces involved has not been carried out s
and lies outside the scope of this paper. Let us simply note that one expects, based on the
in Refs. 41, 42, and 63, to obtain a well-defined Hamiltonian system in this context. Therefo
formal calculations of Ref. 59 lead one to expect that on an appropriate space of fields, su
loaded 11 Apr 2001 to 193.52.214.71. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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the associated physical space–time metrics4g asymptote to the background metricb at a suitable
rate, the HamiltonianH(X,S) will coincide with ~or, at worse, will be closely related to! the one
given by the formula derived in Ref. 59:

H~X,S!5
1

2 E]S
Uab dSab , ~V.5!

where the integral over]S should be understood as the limit asR tends to infinity of integrals of
coordinate spherest50, r 5R on Sext. HeredSab is defined as

]

]xa 4
]

]xb 4dx0`¯`dxn,

with 4 denoting contraction, andUab is given by

Unl5Unl
bXb1

1

8p
~Audetgrsuga[n2Audetbrsuba[n!db

l]Xb
;a , ~V.6!

Unl
b5

2udetbmnu

16pAudetgrsu
gbg~e2gg[ngl]k! ;k . ~V.7!

Here, andthroughout this section, g stands for the space–time metric4g unless explicitly indi-
cated otherwise. Further, a semicolon denotes covariant differentiationwith respect to the back
ground metric b, while e[ Audetgrsu/Audetbmnu. Some comments concerning Eq.~V.6! are in
order: in Ref. 59 the starting point of the analysis is the Hilbert Lagrangian for vacuum Ein
gravity, L5A2detgmn(g

abRab /16p). As the normalization factors play an important role in g
ing a correct definition of mass, we recall that the factor 1/16p is determined by the requiremen
that the theory has the correct Newtonian limit~units G5c51 are used throughout!. With our
signature (2111) the Einstein equations with a cosmological constant read

Rmn2
gabRab

2
gmn52Lgmn ,

so that one needs to repeat the analysis in Ref. 59 withL replaced by
(A2detgmn/16p) (gabRab22L). The general expression for the Hamiltonian~V.5! in terms of
Xm, gmn , andbmn ends up to coincide with that obtained withL50, which can be seen either b
direct calculations, or by the Legendre transformation arguments of Ref. 59, end of S
together with the results in Ref. 62. Note that Eq.~V.6! does not exactly coincide with that derive
in Ref. 59, as the formulas there do not contain the term2Audetbrsuba[ndb

l]Xb
;a . However, this

term does not depend on the metricg, and such terms can be freely added to the Hamilton
because they do not affect the variational formula that defines a Hamiltonian. From an e
point of view such an addition corresponds to a choice of the zero point of the energy. We
that in our contextH(X,S) would not converge if the term2Audetbrsuba[ndb

l]Xb
;a were not

present in~V.6!.
In order to apply this formalism in our context, we letb be anyt-independent metric onM

5R3S such that~with 0ÞL523/l 2)

b52S k1
r 2

l 2 Ddt21S k1
r 2

l 2 D 21

dr21r 2ȟ ~V.8!

onR3Sext'R3@R,`)32M , for someR>0, whereȟ5ȟAB dxA dxB denotes a metric of constan
Gauss curvaturek50,61 on the two-dimensional connected compact manifold2M .

Let us return to the discussion in Sec. V A concerning the freedom of rescaling the coor
r by a positive constantl. First, if k in Eq. ~V.8! is any constant different from zero, then the
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exists a~unique! rescaling ofr and t which bringsk to one, or to minus one. Next, ifk50 we
can—without changing the asymptotic form of the metric—rescale the coordinater by a positive
constantl, the coordinatet by 1/l, and the metricȟ by l22, so that there is still some freedom
left in the coordinate system above; a unique normalization can then be achieved by askin
that the area

A`[E
2M

d2m ȟ ~V.9!

equals 4p—this will be the most convenient normalization for our purposes. Hered2m ȟ is the
Riemannian measure associated with the metricȟ. We wish to point out thatregardlessof the
value ofk, the HamiltonianH(X,S) is independentof this scaling: this follows immediately from
the fact thatUab behaves as a density under linear coordinate transformations. An alternativ
of seeing this is that in the new coordinate systemX equalsl]/]t, which accounts for a factor 1/l
in the transformation law of the coordinate mass, as discussed at the beginning of Sec. V
remaining factor 1/l2 needed there is accounted for by a change of the area of]`S under the
rescaling of the metricȟ which accompanies that ofr .

In order to evaluateH it is useful to introduce the followingb-orthonormal frame:

e0̂5S k1
r 2

l 2 D 21/2

] t , e1̂5S k1
r 2

l 2 D 1/2

] r , eÂ5
1

r
ěÂ , ~V.10!

whereěÂ is an ON frame for the metricȟ. The connection coefficients, defined by the formu
¹eâ

eb̂5v ĉ
b̂âeĉ , read

v 0̂1̂0̂52
r

l 2S k1
r 2

l 2 D 21/2

, v 1̂2̂2̂5v 1̂3̂3̂52
1

r
S k1

r 2

l 2 D 1/2

,

v 2̂3̂3̂55
2

cothu

r
, k521,

0, k50,

2
cotu

r
, k51.

~V.11!

Those connection coefficients which are not obtained from the above ones by permutati
indices are zero; we have used a coordinate systemu,w on 2M in which ȟ takes, locally, the form
du21sinh2 u dw2 for k521, du21dw2 for k50, anddu21sin2 u dw2 for k51. We also have

X0̂5Ak1
r 2

l 25
r

l
1O~r 21!, e1̂~X0̂!5X0̂

;1̂52X0̂;1̂5X1̂;0̂5
r

l 2 , ~V.12!

all the remainingXm̂’s andXm̂; n̂’s are zero. Let the tensor fieldemn be defined by the formula

emn[gmn2bmn. ~V.13!
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Down
We shall use hatted indices to denote the components of a tensor field in the frameeâ defined in
~V.10!, e.g.,eâĉ denotes the coefficients ofemn with respect to that frame:

emn]m ^ ]n5eâĉeâ^ eĉ .

Suppose that the metric4g is such that theeâĉ’s tend to zero asr tends to infinity. By a
Gram–Schmidt procedure we can find a framef ã , ã50,...,3, orthonormalwith respect to the
metric g, such thatf 0 is proportional toe0 , and such that theeâ components off 02e0 ,..., f 3

2e3 tend to zero asr tends to infinity:

f ã5 f ã
âeâ→ r→`d ã

âeâ . ~V.14!

From ~V.5! and ~V.14! we expect that

H~X,S!5 lim
R→`

E
Sù$r 5R%

r 2U1̂0̂ d2m r , ~V.15!

whered2m r is the Riemannian measure induced onSù$r 5R% by 4g. We wish to analyze when
the above limit exists; we have

r 2U1̂0̂
bXb5r 2U1̂0̂

0̂X0̂'
r 3

l
U1̂0̂

0̂ ,

hence we need to keep track of all the terms inU1̂0̂
0̂ which decay asr 23 or slower. Similarly one

sees from Eqs.~V.12! that only those terms in

Dân̂[Audetgr̂ŝugân̂2Audetbr̂ŝubân̂

which areO(r 23), or which are decaying slower, will give a nonvanishing contribution to
term involving the derivatives ofX in the integral~V.15!. This suggests to consider metrics4g
such that

em̂n̂5o~r 23/2!, er̂~em̂n̂!5o~r 23/2!. ~V.16!

The boundary conditions~V.16! ensure that one needs to keep track only of those terms inU1̂0̂

which are linear inem̂n̂ ander̂(em̂n̂), whenU1̂0̂ is Taylor expanded aroundb. For a generalized
Kottler metric ~I.1! we have

e0̂0̂'e1̂1̂'2
2ml2

r 3 , e1̂~e0̂0̂!'e1̂~e1̂1̂!'
6ml

r 3 , ~V.17!

with the remainingem̂n̂’s andeŝ(em̂n̂)’s vanishing, so that Eqs.~V.16! are satisfied. Under~V.16!
one obtains

gâĉ5h âĉ2h âr̂h ĉŝe
r̂ ŝ1o~r 23!,Audetgmnu5Audetbmnu~11 1

2~e0̂0̂2e1̂1̂2eÂÂ!1o~r 23!!,
~V.18!

U1̂0̂
0̂52

1

16p
~2e;1̂1e1̂ ı̂

; ı̂2e0̂0̂
;1̂!1o~r 23!

5
1

16p S e1̂~eÂÂ!1
1

l
~eÂÂ22e1̂1̂!2

1

r
ĎÂe1̂ÂD1o~r 23!,
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1

8p
Da[1̂X0̂]

;a5
1

16p
~D 1̂1̂2D 0̂0̂!X0̂

;1̂5
r

16p l 2 ~D 1̂1̂2D 0̂0̂!1o~r 23!

52
r

16p l 2 eÂÂ1o~r 23!. ~V.19!

The indicesı̂ run from 1 to 3 while the indicesÂ run from 2 to 3;ĎÂ denotes the covarian

derivative on2M , and ĎÂe1̂Â is understood to be the covariant derivative associated with
metric ȟ of a vector field on2M , with repeatedÂ indices being summed over. In Eq.~V.18!
hm̂n̂5diag(21,11,11,11), while thegm̂n̂’s are the components of the tensorgm̂n̂ in a co-frame
dual to ~V.10!. Inserting all this into~V.15! one is finally led to the simple expression

MHam[HS ]

]t
,$t50% D5 lim

R→`

r 3

16p l 2 E
Sù$r 5R%

S r
]eÂÂ

]r
22e1̂1̂D d2m ȟ . ~V.20!

In particular if 4g is the generalized Kottler metric~I.1! one obtains@cf. Eq. ~V.17!#

MHam5
A`m

4p
, ~V.21!

A` defined in~V.9!. If 2M5T2 with area normalized to 4p we obtainMHam5m. For k561 it
follows from the Gauss–Bonnet theorem thatA`54pu12g`u, whereg` is the genus of2M ,
hence

MHam5u12g`um. ~V.22!

This gives againMHam5m for 2M5S2, but this will not be true anymore for2M ’s of higher
genus. We believe that the Hamiltonian approach is the one which providesthe correct definition
of mass in field theories, and therefore Eqs.~V.21!–~V.22! are the ones which provide the corre
normalization of mass.

Let us finally consider static metrics4g of the form~III.33!, and suppose that the hypothes
of point ~2! of Proposition III.7 hold. We can then use the coordinates of that propositio
calculateMHam, and obtain

MHam52
1

8p E
]`S

m` d2m ȟ . ~V.23!

If we further assume thatm` is constant on]`S, Eq. ~V.23! gives

MHam52
m`

2
5Mc

for 2M5S2 and for an appropriately normalizedT2, while

MHam52u12g`u
m`

2
5u12g`uMc

for higher genus]`S ’s. HereMc is the coordinate mass as defined in Sec. V A.

C. A generalized Komar mass

Recall that the Komar mass is a number which can be assigned to every stationary, a
totically flat metric the energy-momentum tensor of which decays sufficiently rapidly:
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MK5 lim
R→`

1

8p E
SR,T

Audetgabu¹mXn dSmn , ~V.24!

whereXm]m is the Killing vector field which asymptotes to]/]t in the asymptotically flat region
and theSR,T[$t5T,r 5R% ’s are coordinate spheres in that region. The normalization fa
1/(8p) has been chosen so thatMK reproduces the familiar mass parameterm when Schwarz-
schild metrics are considered. For metrics considered here withLÞ0 the integral~V.24! diverges
whenXm]m5]/]t and when theSR,T’s are taken to be coordinate spheres in the regionSext where
the metric exhibits the generalized Kottler asymptotics. An obvious way to generalizeMK to the
situation considered in this paper is to remove the divergent part of the integral using a
ground metricb:

MK5 lim
R→`

1

8p E
SR,T

~Audetgabu¹mXn2Audetbabu¹̄mXn!dSmn . ~V.25!

Here¹̄ denotes a covariant derivative with respect to the background metric. More precise
Sext, b, ȟ, etc., be as in Eq.~V.8!, and consider time-independent metricsg which in the
coordinate system of Eq.~V.8! are of the form~III.33! with

V25
r 2

l 2 1 k̃2
2b

r
1oS 1

r D , ] r S V22
r 2

l 2 2 k̃1
2b

r D5oS 1

r 2D , grr 5 l 21 k̃2
2g

r
1oS 1

r D ,

Audetgabu5S r 21
2d l 2

r
1oS 1

r D DAudetȟABu, ~V.26!

for somer -independent differentiable functionsk̃5 k̃(xA), b5b(xA), g5g(xA), andd5d(xA)
defined on a coordinate neigbhorhood of]`S. @The conditions~V.26! roughly reflect the behavio
of the metric in the coordinate system of Proposition III.7.# Under ~V.26! the limit asR tends to
infinity in the definition~V.25! of MK exists, and one finds

MK5 lim
R→`

1

4p E
SR,T

~Audetgabugrmgnt] [mgn] t2Audetbabubrmbnt] [mbn] t!dx2 dx3

5 lim
R→`

1

8p E
SR,T

~Audetgabugrr gtt] rgtt2Audetbabubrr btt] rbtt!dx2dx3

5
1

4p E
]`S

~3b22g12d!d2m ȟ . ~V.27!

It turns out that the value ofMK so obtained depends on the background metric chosen.@Our
definition of background, Eq.~V.8!, is tied to the choice of a particular coordinate system,
another way of stating this is that the numberMK as defined so far is assigned to a metricand to
a coordinate system, in a manner somewhat similar to the coordinate mass of Sec. V A.# Indeed,
given any differentiable functiona(xA) there exists a neighborhood of]`S on which a new
coordinater̂ can be introduced by the formula

r̂ 2

l 2 22
a

r̂
5

r 2

l 2 . ~V.28!

We can then choose the new background to be
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b52S k1
r̂ 2

l 2 Ddt21S k1
r̂ 2

l 2 D 21

dr̂21 r̂ 2ȟ,

and obtain a newMK which will in generalnot coincide with the old one.@It is noteworthy that the
coordinate transformation~V.28! with the associated change of background donot change the
value of the Hamiltonian massMHam.# For example, ifa is constant, using hats to denote th
corresponding functions appearing in the metric expressed in the new coordinate system we

b̂5b1a, ĝ5g13a, d̂5d22a⇒M̂K5MK2
7aA`

4p
,

whereA` is the area of]`S with respect to the metricȟ. It turns out that one can remove th
coordinate dependence in an appropriate class of metrics, tailoring the prescription in such
that Eq.~V.27! reproduces, up to a genus dependent factor, the coordinate massMc . In order to
do that we shall suppose that the metric4g satisfies the hypotheses of point~2! of Proposition III.7
~in particular k̃5k50,61 according to the genus of the connected component of]`S under
consideration!, and we let the background be associated with a coordinate system (r,xA) with r
given by ~III.43!. It follows from Eqs.~V.3! and ~III.45! that in this coordinate system it holds

Audetgabu5r 21oS 1

r D , ~V.29!

where we have used the generic symbolr to denote the coordinater. We then impose~V.29! as
a restriction on the coordinate system in which the generalized Komar massMK has to be calcu-
lated. When this condition is imposed we obtain from~V.3! and ~V.23!

MK52
1

8p E
]`S

m`d2m ȟ5MHam.

We have thus proved
Proposition V.1:Consider a metric4g satisfying the hypotheses of point~2!. of Proposition

III.7, then the generalized Komar mass~V.25! associated to a background metric~V.8! such that
~V.29! holds equals the Hamiltonian mass~V.20!.

Proposition V.1 is theL,0 analogue of the theorem of Beig,64 that for staticL50 vacuum
metrics which are asymptotically flat in spacelike directions the ADM mass and the Komar m
coincide. Our treatment here is inspired by, and somewhat related to, the analysis of Ref.

D. The Hawking mass MHaw„c…

Let c be a function defined on the asymptotic regionSext, with Sext defined as in~V.1!, such
that the level sets ofc are smooth compact surfaces diffeomorphic to each other~at least forc
large enough!, with c→ r→``. Following Hawking,65 Gibbons@Ref. 18, Eq.~17!# assigns a mass
MHaw(c) to such a foliation via the formula

MHaw~c![ lim
e→0

AA1/e

32p3/2E
$c51/e%

S 2R2
1

2
p22

2

3
L DdA, ~V.30!

whereAa is the area of the connected component under consideration of the level set$c5a%.
By considering simple examples in Minkowski space–times it can be seen that this defi

is c dependent. However, when2M5S2, L50, and the coordinate system onSext is such that the
ADM massmADM ~which equalsmH as defined in Sec. V B! of Sext is well defined~see Refs. 58
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and 57!, thenMHaw(c) will be independent ofc, in the class ofc’s singled out by the condition
that the level sets ofc approach round spheres at a suitable rate. No results of this kind are k
whenLÞ0.

The definition~V.30! applied to the functionc5r and the metric~I.1! with kÞ0 gives

MHaw5mu12g`u3/2.

We have also used the Gauss–Bonnet theorem to calculateAA1/e. Thus the definition~V.30!
differs from the coordinate one by the somewhat unnatural factoru12g`u3/2. It is not clear why
such a factor should be included in the definition of mass.

Consider, next, the metrics~III.33! with V andg given by ~III.43!–~III.44!. Let c5V; from
the Codazzi–Mainardi Eq.~III.31!, Eq. ~I.5!, and the definition~III.16! of W we obtain, forV
large enough so thatudVu.0,

2R2
1

2
p22

2

3
L5~22Ri j 1Rgi j !n

inj2uqi j ug
22

2

3
L

522
DiV DjV

VW
DiD jV2uqi j ug

22
2

3
L

52
DiV DiW

VW
2uqi j ug

22
2

3
L.

In the coordinate system of Eq.~III.28!, whereV51/x, one is led to

2R2
1

2
p22

2

3
L5x3

]W

]x
2

2

3
L1O~x6!52

x3

6

]R8

]x
1O~x6!,

and we have used~III.25! and ~III.15!. From A1/e'x22A]`S8 we finally obtain

MHaw~V!52
AA]`S8

32p3/2 E
]`S

1

6

]R8

]x
d2mh852

AA]`S8

32p3/2 E
]`S

l
n8~R8!

6
d2mh8 , ~V.31!

whered2mh8 is the Riemannian area element induced byg8 on ]`S, andn8 denotes the inward-
pointing g8-unit normal to]`S. We have thus proved the following result.

Theorem V.2: Let a triple (S,g,V) satisfying Eqs.~I.3!–~I.5! be Ci compactifiable,i>3.
Then the Hawking massMHaw(V) of the V-foliation is finite and well defined; it is given by th
formula ~V.31!, with R8—the curvature scalar of the metricg85V22g.

We can relateMHaw(V) to the coordinate massMc if we assume in addition that the latter
well defined; recall that this requiredR8 and]xR8 to be constant on]`S. In this case Eq.~V.4!
gives

MHaw~V!5S A]`S8

4p l 2D 3/2

Mc . ~V.32!

From Eq.~III.20! we have2R8ux5052k/ l 2, and the Gauss–Bonnet theorem implies

E
]`S

2R8 d2mh85
2k

l 2 A]`S8 58p~12g`!,

so that wheng`Þ1 we obtain

MHaw~V!5u12g`u3/2Mc . ~V.33!
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We emphasize thatMHaw(V) is finite and well defined even when the conditions of Sec. V
which we have set forth to defineMc , are not met.

Similarly, the Hamiltonian massMHam, associated to the background singled out by
coordinate system of Proposition III.7, can be defined whenR8 is constant on]`S. ~This holds
regardless of whether or not]xR8 is constant on]`S.) Proceeding as above, making use of E
~III.42!–~III.47!, one is led to

g`Þ1⇒MHaw~V!5u12g`u1/2MHam,
~V.34!

g`51, A8̀ 54p l 2⇒MHaw~V!5MHam.

VI. THE GENERALIZED PENROSE INEQUALITY

We recall here an argument of Geroch,13 as extended by Jang and Wald,19 and Gibbons,18 for
the validity of the Penrose inequality:66

Proposition VI.1:Assume we are given a three dimensional manifold (S,g) with connected
boundary]S such that:

~1! R>2Q for some strictly negative constantQ.
~2! There exists a smooth, global solution of the inverse mean curvature flow without cr

points, i.e., there exists a surjective functionu:S→@0,̀ ) such thatdu has no zeros and
uu]S50,

¹ i S ¹ iu

uduu D5uduu.
~VI.1!

~3! The level sets ofu
Ns5$u~x!5s%

are compact.
~4! The boundary]S5u21(0) of S is minimal.
~5! The Hawking mass of the level sets ofu as defined in~V.30! exists.

Then

2MHaw~u!>~12g]S!S A]S

4p D 1/2

2
Q

3 S A]S

4p D 3/2

. ~VI.2!

HereA]S is the area of]S andg]S is the genus thereof.
Remarks:~1! The Proposition above can be applied to solutions of~I.4! and ~I.5! with Q

5L: in this case we haveR52L; further Eq. ~I.5! multiplied by V and contracted with two
vectors tangent to]S shows that the boundary$V50% is totally geodesic and hence minimal.

~2! Equation~VI.2! is sharp—the inequality there becomes an equality for the genera
Kottler metrics.

Proof: Let As denote the area ofNs , and define

s~s!5AAsE
Ns

S 2Rs2
1

2
ps

22
2

3
Q Dd2ms , ~VI.3!

where2Rs is the scalar curvature of the metric induced onNs , d2ms is the Riemannian volume
element associated to that same metric, andps is the mean curvature ofNs . The hypothesis tha
du is nowhere vanishing implies that all the objects involved are smooth ins. At s50 we have

s~0!5AA]SE
]S

~2R02 2
3 Q!d2m05AA]S~8p~12g]S!2 2

3 QA]S!. ~VI.4!
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On the other hand, lims→`s(s)532p3/2MHaw(u). The generalization in Ref. 18 of the classic
calculation of Ref. 13 gives

]s

]s
>0. ~VI.5!

This implies lims→`s(s)>s(0), which gives~VI.2!. h

To be able to carry out the above argument one had to assume thatdu had no zeros, which
implies in particular that]`S is connected withg]S5g` . It is not known whether or not the othe
hypotheses of Proposition VI.1, or the conditions of Definition III.1 together with Eqs.~I.3!–~I.5!,
force ]S to be connected. If they do not, one is tempted to conjecture that the right ineq
should be

2MHaw~u!>(
i 51

k S ~12g] iS
!S A] iS

4p
D 1/2

2
Q

3
S A] iS

4p
D 3/2D . ~VI.6!

Here the] iS ’s, i 51,...,k, are the connected components of]S, A] iS
is the area of] iS, andg] iS

is the genus thereof. This would be the inequality one would obtain from the Geroch–Gib
argument if it could be carried through foru’s which are allowed to have critical points, o
manifolds with]`S connected but]S not necessarily connected.

We note that whenL50 there is a version of the proof of Proposition VI.1 due to Huisk
and Ilmanen in whichdu is allowed to have zeros~with ]S connected!.67 Note that at points
wheredu vanishes Eq.~VI.1! does not make sense classically, and has to be understood
proper way. Further the monotonicity calculation of Ref. 13 breaks down at critical level setsu,
as those do not have to be smooth submanifolds. Nevertheless~whenL50) existence of appro-
priate functionsu ~perhaps with critical points! together with the monotonicity ofs can be
established14,15when]S is an outermost~necessarily connected! minimal sphere. It is conceivable
that the argument of Huisken and Ilmanen can be modified to include the caseLÞ0. One of the
difficulties here is to handle the possibly changing genus of the level sets ofu.

Let us discuss some of the consequences of the~hypothetical! Eq. ~VI.6!. To proceed further
it is convenient to introduce a mass parameterm defined as follows:

m55
MHaw, ]`S5S2,

MHaw, ]`S5T2, with the normalizationA8̀ 54p l 2,

MHaw

ug]`S21u3/2, g]`S.1.

~VI.7!

Strictly speaking, we should writem(u) if MHaw(u) is used above,m(V) if MHaw(V) is used, etc.;
we shall do this when confusions are likely to occur. For generalized Kottler metrics the
m5m(u) so defined coincides with the mass parameter appearing in~I.1! when u is the radial
solution u5u(r ) of the problem~VI.1!; m(V) coincides with the coordinate massMc for the
metrics considered here whenMc is defined, cf. Eq.~V.32!.

Note, first, that if all connected components of the horizon have spherical or toroidal topo
then the lower bound~VI.6! is strictly positive. For example, if]S5T2, and]`S5T2 as well we
obtain

2m>
1

l 2 S A]S

4p D 3/2

.

On the other hand, if]S5T2 but g]`S.1 from Eq.~VI.6! one obtains
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2m>
1

l 2ug`21u S A]S

4p D 3/2

.

Let us return to the case where Eqs.~I.3!–~I.5! hold;68 we can then use the Galloway–Schleich
Witt–Woolgar inequality4

(
i 51

k

g] iS
<g` . ~VI.8!

It implies that if ]`S has spherical topology, then all connected components of the horizon
be spheres. Similarly, if]`S is a torus, then all components of the horizon are spheres, ex
perhaps for at most one which could be a torus. It follows that to have a component of the h
which has genus higher than one we needg`.1 as well.

When some—or all—connected components of the horizon have genus higher than o
right-hand side of Eq.~VI.6! might become negative. Minimizing the generalized Penrose ineq
ity ~VI.6! with respect to the areas of the horizons gives the following interesting inequality

MHaw~u!>2
1

3A2L
(

i
ug] iS

21u3/2, ~VI.9!

where the sum is over those connected components] iS of ]S for which g] iS
>1. Equation~VI.9!,

together with the elementary inequality( i 51
N ul i u3/2<(( i 51

N ul i u)3/2, lead to

m>2
1

3A2L
. ~VI.10!

The Geroch–Gibbons argument establishing the inequality~VI.4! when a suitableu exists can
also beformally carried through when]S5B. In this case one still considers solutionsu of the
differential equation that appears in Eq.~VI.1!, however the Dirichlet condition onu at ]S is
replaced by a condition on the behavior ofu near some chosen pointp0PS. If the level set ofu
aroundp0 approach distance spheres centered atp0 at a suitable rate, thens(s) tends to zero when
the Ns’s shrink to p0 , which together with the monotonicity ofs leads to the positive energ
inequality:

MHaw~u!>0. ~VI.11!

It should be emphasized that the Horowitz–Myers solutions23 with negative mass show that th
argument breaks down wheng`51.

When ]`S5S2 one expects that~VI.11!, with MHaw(u) replaced by the spinorially define
mass~which might perhaps coincide withMHaw(u), but this remains to be established!, can be
proved by Witten-type techniques, compare Refs. 24 and 25. On the other hand it follows
Ref. 26 that when]`SÞS2 there exist no asymptotically covariantly constant spinors which
be used in the Witten argument. The Geroch–Gibbons argument has a lot of ‘‘ifs’’ attached
context, in particular if]`SÞS2 then some level sets ofu are necessarily critical and it is no
clear what happens withs when a jump of topology from a sphere to a higher genus sur
occurs. We note that the area of the horizons does not occur in~VI.10! which, wheng]`S.1,
suggests that the correct inequality is actually~VI.10! rather than~VI.11!.
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VII. MASS AND AREA INEQUALITIES

A. Preliminaries

Let (S,g,V) satisfy ~I.3!–~I.5! together with the topological, the differential, and th
asymptotic requirements spelled out in the statements of Theorems I.3 or I.5.~Lemma VII.3 below
actually holds under more general conditions.! We first introduce the surface gravityk of ]S to be
the corresponding restriction of the functionAW defined by~III.16!:

k[udVugu]S , ~VII.1!

where we have normalizedV so that Eq.~III.21! holds, cf. Proposition III.3. By the strong
maximum principle~Ref. 69, Lemma 3.4! W is nowhere vanishing on]S. Moreover, it is well
known @and easily seen using Eq.~I.5!# that k is locally constant on]S:

05njDiD jVuV505
D jV

AW
DiD jVuV505

1

2AW
DiWuV50 . ~VII.2!

Hereni is the unit normal to]S, whereV vanishes. It is convenient to introduce the notion o
reference solution~RS!: this is a generalized Kottler solution with the same genusg` as (S,g,V).
Moreover, if]SÞB, the surface gravityk of the RS is chosen to be equal to the maximum of
surface gravities of (S,g,V). On the other hand, if]S5B, the mass of the RS will be specifie
suitably below, in the proof of~I.3!. It should be stressed, that we arenot comparing manifolds
and/or metrics, but we are only using the resulting scalar functionsV andW:

We only consider RS with massm0 in the range~II.6! ~if ]SÞB, this property follows from
the restriction~I.7! on k!. Let r (•) be the functionV0→r (V0) constructed at the end of Sec. I
composingr with V we obtain functionsr (V(•)) andW0(r (V(•))) defined onS. By an abuse of
notation we shall still denote those functions byr andW0 .

Remark:In the same manner, we can define a RS from other solutions with the propert
W is a function ofV only. ~In Lemma VII.3 below we will also include the Nariai case.!

Following Ref. 70 we definec(V) to be that unique solution of the equation

c21
dc

dV
52VW0

21 m0

r 3 ~VII.3!

which goes71 to 1 asV goes to`. ~In particularc[1 whenm050.) Herer 5r (V) is again the
function defined at the end of Sec. II. Standard results on ODE’s show that solutions of~VII.3!
have no zeros unless identically vanishing, and that

C[c+V

can be extended by continuity to a smooth function onS̄, still denoted byC, which satisfies

C.0, Cu]`S51.

We also define

g̃i j 5V22C4gi j , W̃5C24W, W̃05C24W0 . ~VII.4!

We proceed with a computation which is required in Lemma VII.1 as well as in Lemma V

Consider a level set$V5const% of V which is a smooth hypersurface inS̄, with unit normalni ,
induced metrichi j , scalar curvature2R, second fundamental formpi j defined with respect to an
inner pointing normal, mean curvaturep5hi j pi j ; we denote byqi j the trace-free part ofpi j :
qi j 5pi j 2

1
2hi j p. Using Eq.~II.4!, the Eq.~I.4! with g5g0 andV5V0 , together with the relation

dV0/dr 5 AW0/V0 we obtain
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V21
dW0

dV
52

2

3
L2

4m0

r 3 . ~VII.5!

To obtain~VII.6! we use, in this order, the definitions~VII.4!, the Eqs.~I.4!–~I.5!, Eqs.~VII.5! and
~VII.3!, and the Codazzi–Mainardi equation:

V21W̃21DiVDi~W̃2W̃0!5V21W21DiV~DiW!2V21
dW0

dV
24V21C21

dC

dV
~W2W0!

5~2Ri j 2Rgi j !n
inj1

2

3
L1

4m0

r 3 2
4m0

r 3 ~12W0
21W!

522R2qi j q
i j 1

1

2
p21

2

3
L1

4m0

r 3 2
4m0

r 3 ~12W0
21W!. ~VII.6!

Lemma VII.1:Under the conditions of Theorem I.1, suppose further that the scalar curv
R8 of the metricg85V22g is constant on]`S. Let V be normalized so that~III.21! holds, with
A8̀ 54p l 2 when]`S5T2. If m is the Hawking mass parameter defined as in~VI.7!, then

E
]`S

Di8~W̃2W̃0!dS8 i52S 2L

3 D 2

A]`S8 ~m2m0!, ~VII.7!

wheredS8 i denotes the outer-oriented area element of the metricg85V22g, andA]`S8 is the area

of ]`S with respect to that metric.
Proof: Using

D8 i~W̃2W̃0!ni85
1

AW8
Di~W̃2W̃0!DiV ~VII.8!

and ~VII.6!, the left-hand side of~VII.7! reads

E
]`S

VW̃

AW8
F22R2qi j q

i j 1
1

2
p21

2

3
L1

4m0

r 3 2
4m0

r 3 ~12W0
21W!Gd2mg8 , ~VII.9!

where d2mg8 is the two-dimensional surface measure associated with the metricg8. Chasing
through the definitions one finds thatVW̃/AW8 'A2 (L/3)V3 near]`S. From the definition of
V0 we further haver'A2 (3/L)V, again near]`S, so that limV→` VW̃/(AW8r 3)5(2L/3)2. It
follows that the second to last term in~VII.9! gives a contribution

S 2L

3 D 2

A]`S8 m0 , ~VII.10!

whereA]`S8 denotes theg8 area of the connected component of]`S under consideration. Equa

tion ~III.15! and its equivalent withW replaced byW0 show that (12W0
21W)→V→`0 so that the

last term drops out from~VII.9!. Furthermore, by Eq.~III.25! we have (VW̃/AW8) qi j q
i j

5O(V23)→V→`0, and it remains to analyze the contribution of2VW̃(2R2 1
2p

22 2
3L)/AW8 to

the integral~VII.7!. To do this, note that

A1/e[A~$V51/e%!5E
V85e

d2mg5E
V85e

V2 d2mg8'e22A]`S8 ,

whered2mg is the induced measure on]`S associated with the metricg. It follows that
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2E
V85e

VW̃

AW8
S 2R2

1

2
p22

2

3
L Dd2mg8

'2A2
L

3

1

e EV85e
S 2R2

1

2
p22

2

3
L Dd2mg

'2A2
L

3A A1/e

A]`S8
E

V85e
S 2R2

1

2
p22

2

3
L Dd2mg→e→02S 2L

3 D 2

A]`S8 m,

~VII.11!

where

m[ lime→0

1

4
S 2

LA]`S8

3
D 23/2

AA1/eE
$V51/e%

S 2R2
1

2
p22

2

3
L DdA. ~VII.12!

To finish the proof we need to show thatm in ~VII.12! is indeed the Hawking mass as defined
Eq. ~VI.7!. In the torus case this follows immediately from the normalization conditionA8̀
54p l 2; for the remaining topologies this can be seen as follows: ifV is normalized so that
~III.21! holds, then~III.20! implies2R8ux5052 2

3Lk. When g`Þ1 the Gauss–Bonnet theore
gives

8pu12g`u5U E 2R8 d2mg8U52 2
3 LA]`S8 ,

which shows that the mass defined by Eq.~VII.12! coincides with that of~VI.7!. h

For the subsequent lemma, recall from Theorem I.3 that]1S refers to the component ofS
with the largest surface gravity.

Lemma VII.2:Under the conditions of Theorem I.1, we have

E
]1S

W̃21/2D̃ i~W̃2W̃0!dS̃i58pF ~g]1S21!2
A]1S

A0
~g`21!G . ~VII.13!

Proof: We integrate~VII.6! over ]1S. We note that Eq.~I.5! multiplied by V and contracted
with two vectors tangent to]S shows that]S is totally geodesic; equivalently,qi j 50. We
introduce2R05 2

3 L1(4m0 /r 0
3), the scalar curvature of the metricdVk

2 . Using ~VII.6! and the
Gauss–Bonnet theorem, the left-hand side of~VII.13! can be written as

E
]1S

S 22R1
2

3
L1

4m0

r 0
3 DdA5E

]1S
~22R12R0!dA58p~g]1S21!12R0A]1S .

~VII.14!

Equation~VII.13! is then obtained by eliminating2R0 from ~VII.14!, using the Gauss–Bonne
theorem for the generalized Kottler metrics: 8p(12g`)52R0A0 . h

The following elliptic equation forW̃2W̃0 will be the crucial ingredient in the proof of th
theorems. It is also useful for Lemma VII.3.

~D̃2a!~W̃2W̃0!5 1
4 W̃21R̃i jkR̃i jk1 3

4 W̃21D̃ i~W̃2W̃0!D̃ i~W̃2W̃0!, ~VII.15!

with
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a5
5

3r 3 m0LV4W0
22W̃, ~VII.16!

D̃ being the Laplace operator of the metricg̃i j , andR̃i jk—the Cotton tensor ofg̃i j . This equation
is obtained by specializing72 Eq. ~V.4! of Ref. 70~which has been used in that paper in the cont
of a uniqueness proof for static perfect fluid solutions! to the present case with 8pr528pp
5L.

It is important to stress that Eq.~VII.15!, as it stands, makes only sense on the set$dV

Þ0%, because of the factorsW̃21 appearing there. However, it follows from Eq.~I.4! that the set
$dV50% has no interior: indeed, ifdV vanishes on a connected open set thenV is constant there,
which is compatible with Eq.~I.5! only if V vanishes there. This contradicts our hypothesis thaV
vanishes only on]S. Hence Eq.~VII.15! holds on an open dense set ofS. Since the left-hand side
of Eq. ~VII.15! is a smooth function onS\]S, the right-hand side thereof is smoothly extendib
by continuity to a smooth function onS\]S, and Eq.~VII.15! holds everywhere on this set wit
the right-hand side being understood in the sense explained here.

Lemma VII.3:Let LPR, and let (S,g,V) be a solution of~I.3!–~I.5! such that

~a! eitherW[W0 for W0 defined from the generalized Kottler or from the Nariai solution~I.2!,
or

~b! (S,g) is locally conformally flat.

Suppose further thatS is a union of compact boundary-less level sets ofV. Then

~1! Every connected componentV of the set$pPSudV(p)Þ0% ‘‘corresponds to’’ one of the
generalized Kottler solutions~I.1!, or to one of the generalized Nariai solutions~I.2!, or is flat.
More precisely, there exists an intervalJ,R, a two-dimensional compact Riemannian ma
fold (2M ,dVk

2), with dVk
2 an (r -independent! metric of constant Gauss curvaturek50,61,

and a diffeomorphismc:V→J32M such that, transportingg and V to J32M using c, we
have:

~i! Either there exists a constantl.0 such thatV5lV0 and

g5V0
22 dr21r2 dVk

2, rPJ, V0
25k2

2m

r
2

L

3
r2, ~VII.17!

~ii ! or, whenkL.0, there exists a constantlPR (l.0 if L.0) such that

g5V22 dz21uLu21 dVk
2, zPJ, V25l2Lz2, ~VII.18!

~iii ! or, whenk5L50, there exists a constantl.0 such thatV5lz and

g5dz21dVk
2, zPJ. ~VII.19!

~In each case the intervalJ is constrained by the condition thatV andV2 be non-negative!.

~2! Under condition~a!. above, ifS is connected and ifW0 ~considered as a function ofV) has no
zeros in the interval whereV takes its values,

;pPS W0~V~p!!Þ0, ~VII.20!

thenV5S, thus Eqs.~VII.18! or ~VII.17! hold globally onS.
Remarks:

~1! Here we do not make any hypotheses on the sign ofL.
~2! The result is local, in particular it is sufficient to be able to invertr 0(V0) locally on the range

of the values ofV under consideration to obtainW0(V).
~3! The set (S,g,V) corresponding to the metric~VII.19! arises from a boost Killing vector in

suitably identified Minkowski space–time.
~4! We note that the setV could be empty, as is the case forR3T3 with the obvious flat metric.

Our analysis does not say anything about the metric on regions wheredV vanishes.
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~5! We note that the generalized Kottler and the generalized Nariai metrics also arise natur
the generalized Birkhoff theorem, see Refs. 73 and 74, and also Ref. 75 for a very
treatment in theL.0 case.

~6! The lemma can easily be reformulated by taking any conformally flat solution of~I.4!-~I.5! as
a reference solution. The condition of conformal flatness is required to ensure that~VII.15!
holds and excludes, in particular, the Horowitz–Myers solutions with a toroidal I1 ~Ref. 23!
as RS.

Proof: The proof is an adaptation of an argument of Ref. 76 to the current setting. Sup
thatW5W0 for someW0 ; Eq. ~VII.15! shows then thatR̃i jkR̃i jk vanishes, so that (S,g) is locally
conformally flat. It then follows that condition~b!. holds in both cases.

We start by removing fromS some undesirable points: set

Ssing[$pPSuthe connected component of the set$quV~q!5V~p!% containing

p contains a pointr such thatdV~r !50.%,

S8[S\Ssing.

Ssing is a closed subset ofS, so thatS8 is still a manifold. It follows from Sard’s theorem tha
S8ÞB. We note thatS8 still satisfies all the hypotheses of the lemma, except perhaps for b
connected. By construction all the level sets ofV are noncritical inS8. ~Recall that a level se
$V5c% of V is noncritical if dV is nowhere vanishing on$V5c%.)

Let U to be any connected component ofS8. Compactness of the level sets ofV implies77 that
U is diffeomorphic toI 32M , for some two-dimensional compact connected manifold2M and
some intervalI ,R, with V equal toc on $c%32M , cPI , and that onU the functionV can be used
as a coordinate. Further we can introduce on2M a finite number of coordinate patches wi
coordinatesxA, A51,2, so that onU the metric takes the form

g5W21 dV21hAB dxA dxB. ~VII.21!

Let, as before,qAB dxA dxB be the trace free part of the extrinsic curvature tensor of the level
of V—in the coordinate system of~VII.21!

qAB5AWS ]hAB

]V
2

1

2
hCD

]hCD

]V
hABD . ~VII.22!

Equations~VII.22! and ~III.23! imply that qAB vanishes hence]hAB /]V is pure trace, thatW
5W(V), and that detgAB is a product of a function ofV with a function of the remaining
coordinates. We thus have

h5W~V!21 dV21r ~V!2 dV2 ~VII.23!

for some positive functionr (V), wheredV2 is a V-independent metric on2M . Next, from ~I.5!
and from the Codazzi–Mainardi equations~VII.24!,

R1a8 52Da8p81Db8pa8
b52 1

2 Da8p81Db8qa8
b ~VII.24!

@here we are using the adapted coordinate system of Eq.~III.28! with x15x and with the indices
a,b52,3 corresponding to the remaining coordinates; furtherD8 denotes the Levi–Civita deriva
tive associated with the metrich8#, respectively~III.31!, applied to2M,U, we find that the mean
curvaturep of all level surfaces, respectively, their Ricci scalars, are constant. Hence (2M ,dV2)
is a space of constant curvature, and scalingr appropriately we can without loss of generali
assume that the Gauss curvaturek of the metricdV2 equals 0,61, as appropriate to the genus
2M . We define
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L5
dW

dV
12LV. ~VII.25!

Evaluating~I.4! for the metric~VII.23!, we find

dr

dV
52

rL

4W
. ~VII.26!

Equations~I.4!–~I.5! for the metric~VII.23! are equivalent to~VII.25!–~VII.26! together with

2WS L2
k

r 2D5LS V21W2
L

8D , ~VII.27!

W
dL

dV
5

3

4
L21~V21W2LV!L. ~VII.28!

These equations arise, e.g., by adapting Eqs.~3.16! and ~3.17! of Ref. 70 to the present cas
~namely by setting 8pr528pp5L, L15L and C25k, and allowing the constantk to take
negative values!. Suppose, first, that there existsV* such thatL(V* )50. Equation~VII.28! shows
then thatL[0, and from~VII.27! one obtains

L5
k

r 2 . ~VII.29!

If k50 then L vanishes as well; furtherr is constant by Eq.~VII.26! and can therefore be
absorbed intodV2. Integrating Eq.~VII.25! one finds that there exists a strictly positive const
l such thatW5l2, defining a coordinatez by the equationz5V/l proves point~iii ! on U. Next,
if kÞ0 Eq. ~VII.29! giveskL.0 as desired, together withr 2521/uLu. Integrating Eq.~VII.25!
one obtainsW5L(l2V2), for some constantlPR. Introducing the coordinatez via the equa-
tion V25l2Lz2 establishes point~1ii!. on U.

In the case ofL without zeros we obtain, from~VII.25!, ~VII.26!, and ~VII.28!, that
(d/dV) (VAW/rL )50, which implies that there exists a nonvanishing constanta such that

L5aV
AW

r
. ~VII.30!

Using ~VII.26! one is led to

dV

dr
52

4AW

aV
. ~VII.31!

Next we define

m~V!52
a

4
r 2AW1

Lr 3

3
; ~VII.32!

from ~VII.25!, ~VII.30!, and~VII.31! we obtaindm/dV50, i.e.,m is a constant. Equation~VII.27!
gives V25(16/a2) @k2(2m/r ) 2 (L/3) r 2#. Equation ~VII.26! shows that we can user as a
coordinate, and Eq.~VII.31! implies that the metric is of the desired form~VII.17!. This estab-
lishes point~1i! on U.

Let V be the connected component of$dVÞ0%,S that containsU. To establish point~1! of
the lemma we need to show thatV5U. We claim thatU is open inV—and hence inS—which can
be seen as follows: LetpPU, we thus havedV(q)Þ0 for all q such thatV(p)5V(q). By
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Eq. ~VII.23! udVug5AW is constant on the intersection withU of the level setV21(V(p)) of V
throughp, so that infV21(V(p))ùUudVug.0, which easily implies that all nearby level sets inU,S8
are noncritical.

Let us show now thatU is closed inV. To see that, consider a sequencepiPU such thatpi

→pPV. By definition of V the function udVug has no zeros onV, hencedV(p)Þ0. Now it
follows from ~III.23! that udVug is locally constant on smooth subsets of level sets ofV, which
easily implies~a! that the connected component ofV21(V(p)) containingp is smooth and~b! that
udVug is nowhere vanishing there. Compactness of the level sets ofV implies that all the connected
components of level sets intersecting a neighborhood ofp are noncritical, and hence are inS8. It
then follows thatpPU.

We have thus shown thatU is both open and closed inV; connectedness ofV shows thatU5V,
and point~1! is established.

To prove point~2!, we note that the equalityW(p)5W0(V(p)) together with Eq.~VII.20!
shows thatV has no critical points onS; asS is connected the setV of point ~1! coincides with
S, and point~2! follows from point ~1!. h

B. Proofs

Proof of Theorem I.3:Suppose that]S5B. We first consider as RS a generalized Kott
solution withm50 @see Eq.~II.5!#: This leads to

C[1, W̃0~V0!52
L

3
~V0

22k!. ~VII.33!

We further normalizeV as in Proposition III.3, so that by~III.15!, ~III.19!, and~III.21! we have
W̃2W̃0→ r→`0. ~Actually when]`S5T2, the normalization ofV does not play any role, as w
make claims only about the sign ofm in this case.! Equation~VII.15! together with the maximum
principle shows that

W̃2W̃0<0 on S, ~VII.34!

n8 iDi8~W̃2W̃0!u]`S>0, ~VII.35!

wheren8 is theouter pointing g8-unit normal to]`S. Further, equality is attained in~VII.34! or
in ~VII.35! if and only if W[W0 ~Ref. 69, Theorems 3.5 and 3.6!. Thus Lemma VII.1 together
with Eq. ~VII.35! shows thatm<0. Assume now thatm50 in the case]`S5S2; as an indirect
argument, we also assume thatm50 in theT2 case, or thatm>mcrit in the remaining cases. In th
sphere or torus case from the strong maximum principle we obtain

W[W0 . ~VII.36!

In the higher genus cases we consider~VII.15! again but take here as RS a generalized Kot
solution with the same mass as the given one,m05m. Equations~VII.34!–~VII.35! hold again;
then Lemma VII.1 shows that equality must hold in~VII.35!. Applying the maximum principle
again yields Eq.~VII.36!. We note that both point~a! as well as the structural hypotheses
Lemma VII.3 hold under the hypotheses of Theorem I.3. Equation~VII.36! and the discussion o
Sec. II show that point~2! of that lemma applies, so that the given solution must be a memb
the generalized Kottler family withm in the range~II.6! ~the generalized Nariai metrics ar
excluded as they do not satisfy the asymptotic hypotheses of Theorem I.3!. In the case]`S
5S2 point ~1! readily follows. In the remaining cases none of these solutions has the top
required in Theorem I.3, which gives a contradiction and establishes Theorem I.3. h

Proof of Theorem I.5:By choice of the RS we have (W̃2W̃0)u]S50. We normalizeV again
so that lim→`(W̃2W̃0)50 holds, cf. Proposition III.3 and Eq.~III.15!. Negativity ofm0 implies
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that a in ~VII.15! is non-negative. The maximum principle applied to Eq.~VII.15! gives W̃

2W̃0<0 on S, with equality being achieved somewhere if and only ifW[W0 . Moreover, as in
the proof of point~2! the boundary version of the strong maximum principle~Ref. 69, Theorem
3.6! implies thatni8Di8(W̃2W̃0).0 on]`S unlessW5W0 . Lemma VII.1 allows us to conclude
that eitherm,m0 or W[W0 . In that last case point~2! of Lemma VII.3 implies that (S,g,V)
corresponds to a generalized Kottler solution. In any case there holdsm<m0 .

To prove the area inequality in~I.8! requires some care as the metricg̃ defined in Eq.~VII.4!
is singular atS, so that standard maximum principle arguments such as Ref. 69, Theorem 3
not apply. We proceed as follows. By choice ofW0 we haveW̃5W̃0 on ]1S. Further, Eq.~VII.2!

shows thatniDi(W̃2W̃0) vanishes there. De l’Hospital’s rule, the nonvanishing ofdV at ]S, and
the requirementW̃2W̃0<0 lead to

njni DiD j~W̃2W̃0!u]S5 lim
V→0

DiV Di~W̃2W̃0!

V
<0.

It follows that the left-hand side of Eq.~VII.13! is nonpositive, which establishes the second p
of ~I.8!. h

Proof of Corollary I.6:Assume that]S is connected and that~VI.2! holds; we want to show
that~I.8! implies an inequality inverse to~VI.2!. In order to do this, note first that by~I.8! the mass
m is nonpositive, and Eq.~VI.2! implies thatg]S.1. It is useful to introduce a genus-rescaled a
radiusr ]S by the formula

r ]S5A A]S

4p~g]S21!
.

In terms of this object, the inequality~VI.2! reads

2mug`21u3/21S r ]S1
L

3
r ]S

3 D ug]S21u3/2>0. ~VII.37!

It follows that r ]S1 (L/3) r ]S
3 >0, and the Galloway–Schleich–Witt–Woolgar inequality4 g]S

<g` implies

2m1r ]S1
L

3
r ]S

3 >0. ~VII.38!

Let us denote byr 0 the r ]S corresponding to the relevant generalized Kottler solution:

r 05A A0

4p~g]`S21!
.

The inequality~VII.38! is actually an equality for the generalized Kottler solutions, therefor
holds that 2m01r 01 (L/3) r 0

350. We haver 0>1/A2L from ~II.8!, andm<m0 , r ]S>r 0 from
~I.8!, so that

2m1r ]S1
L

3
r ]S

3 52m1r ]S1
L

3
r ]S

3 22m02r 02
L

3
r 0

3

52~m2m0!1~r ]S2r 0!F11
L

3
~r ]S

2 1r ]Sr 01r 0
2!G

<~r ]S2r 0!~11Lr 0
2!<0. ~VII.39!
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It follows from Eqs.~VII.38!–~VII.39! that r ]S5r 0 , m5m0 , and the rigidity part of Theorem I.5
establishes Corollary I.6. h

ACKNOWLEDGMENTS

W.S. is grateful to Tom Ilmanen for helpful discussions on the Penrose inequality. We
Gary Horowitz for pointing out Ref. 23.

1W. D. Sitter, Proc. K. Ned. Akad. Wet.20, 229 ~1917!.
2F. Kottler, Ann. Phys.~Leipzig! 56, 401 ~1918!.
3H. Nariai, Sci. Rep.Tohoku Univ. Ser. 135, 62 ~1951!.
4G. Galloway, K. Schleich, D. Witt, and E. Woolgar, Phys. Rev. D60, 104039~1999!.
5L. Vanzo, Phys. Rev. D56, 6475~1997!.
6R. B. Mann, Class. Quantum Grav.14, L109 ~1997!.
7D. Brill, J. Louko, and P. Peldan, Phys. Rev. D56, 3600~1997!.
8W. Israel, Phys. Rev.164, 1776~1967!.
9G. Bunting and A. Masood-ul-Alam, Gen. Relativ. Gravit.19, 147 ~1987!.

10P. Chrus´ciel, Class. Quantum Grav.16, 661 ~1999!.
11W. Boucher, G. Gibbons, and G. Horowitz, Phys. Rev. D30, 2447~1984!.
12R. Penrose, Riv. Nuovo Cimento1, 252 ~1969!.
13R. Geroch, Ann. N.Y. Acad. Sci.224, 108 ~1973!.
14G. Huisken and T. Ilmanen, Int. Math. Res. Not.20, 1045~1997!.
15G. Huisken and T. Ilmanen, J. Diff. Geom.~in press!.
16H. Bray, Ph.D. thesis, Stanford University, 1997.
17H. Bray, math.DG/9911173.
18G. Gibbons, Class. Quantum Grav.16, 1677~1999!.
19P. Jang and R. Wald, J. Math. Phys.18, 41 ~1977!.
20B. Carter, inGeneral Relativity, edited by S. Hawking and W. Israel~Cambridge University Press, Cambridge, 1979!,

pp. 294–369.
21E. Witten and S. Yau, hep-th/9910245.
22G. Galloway, K. Schleich, D. Witt, and E. Woolgar, hep-th/9912119.
23G. Horowitz and R. Myers, Phys. Rev. D59, 026005~1999!.
24L. Andersson and M. Dahl, Ann. Global Anal. Geom.16, 1 ~1998!.
25G. Gibbons, S. Hawking, G. Horowitz, and M. Perry, Commun. Math. Phys.88, 295 ~1983!.
26H. Baum, Ann. Global Anal. Geom.7, 205 ~1989!.
27M. Henneaux and C. Teitelboim, Commun. Math. Phys.98, 391 ~1985!.
28S. Hawking, Phys. Lett. B126, 175 ~1983!.
29A. Ashtekar and A. Magnon, Class. Quantum Grav.1, L39 ~1984!.
30E. Woolgar, Class. Quantum Grav.16, 3005~1999!.
31See Ref. 5 for an exhaustive analysis, and explicit formulae for the roots of Eq.~II.1!.
32When2M5T2 a unique normalization ofX needs a further normalization ofdVk

2 , cf. Secs. V A and V B for a detailed
discussion of this point.

33The methods of Ref. 78 show that in this case the space–times with metrics~I.1! can be extended to black hol
space–times with a degenerate event horizon, thus a claim to the contrary in Ref. 5 is wrong. It has been claimed
proof in Ref. 7 thatI 1, as constructed by the methods of Ref. 78, can be extended to a larger one, sayI 1̂, which is
connected. Recall that the claim would imply that]I 2(I 1̂)5B ~see Fig. 2 in Ref. 7!, thus the space–time would no
contain an event horizon with respect toI 1̂. Regardless of whether such an extendedI 1̂ exists or not, we wish to point
out the following:~a! there will still be degenerateeventhorizons as defined with respect to any connected compo
of I 1; ~b! regardless of how null infinity is added there will existdegenerate Killing horizonsin those space–times;~c!
there will exist anobserverhorizon associated to the world line of any observer which moves along the orbits o
Killing vector field in the asymptotic region. It thus appears reasonable to give those space–times a black hole i
tation in any case.

34We use the convention that a manifold with boundaryS contains its boundary as a point set.
35R. Beig and W. Simon, Commun. Math. Phys.78, 75 ~1980!.
36L. Andersson and P. Chrus´ciel, Diss. Math.355, 1 ~1996!.
37P. Chrus´ciel, E. Delay, G. Galloway, and R. Howard, Ann. Henri Poincare´ ~in press!, URL http://www.phys.univ-

tours.fr/;piotr/papers/area
38L. Andersson, P. Chrus´ciel, and H. Friedrich, Commun. Math. Phys.149, 587 ~1992!.
39L. Lindblom, J. Math. Phys.29, 436 ~1988!.
40R. Penrose, Proc. R. Soc. London, Ser. A284, 159 ~1965!.
41H. Friedrich, J. Geom. Phys.17, 125 ~1995!.
42J. Kánnár, Class. Quantum Grav.13, 3075~1996!.
43A. Magnon, J. Math. Phys.26, 3112~1985!.
44R. Geroch, Commun. Math. Phys.13, 180 ~1969!.
45B. Carter, J. Math. Phys.10, 70 ~1969!.
loaded 11 Apr 2001 to 193.52.214.71. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



er weak
he
ndition

et under
ss
ot been

ss of

ic

36,

ta

ich the
ith

ent
nifolds

lic
e
chy

o obtain

logical

J.

1817J. Math. Phys., Vol. 42, No. 4, April 2001 Towards the classification of static vacuum . . .

Down
46C. Vishveshwara, J. Math. Phys.9, 1319~1968!.
47Recall that in the asymptotically flat case one can derive an asymptotic expansion for stationary metrics from rath

hypotheses on the leading order behavior of the metric~Refs. 79–81!. See especially Refs. 82 and 83, where t
Lichnerowicz theorem is proved without any hypotheses on the asymptotic behavior of the metric, under the co
of geodesic completeness of space–time.

48The key point of the argument in Ref. 11 is to prove that the coordinate mass is negative. When]`S5S2, and the
asymptotic conditions are such that the positive energy theorem applies, one can conclude that the initial data s
consideration must be coming from one in anti-de Sitter space-timesprovided one shows that the coordinate ma
coincides with the mass which occurs in the positive energy theorem. To our knowledge such an equality has n
proved so far for metrics with the asymptotics~III.41!, or else.

49We note thatk̃ is of differentiability class lower by two orders as compared to the metric itself, which leads to a lo
three derivatives when passing to a new coordinate system in whichr is defined by Eq.~III.49!. One can actually
introduce a coordinate system closely related to~III.49! with a loss of only one degree of differentiability of the metr
by using the techniques of Ref. 36, Appendix A, but we shall not discuss this here.

50D. Brill, G. Horowitz, D. Kastor, and J. Traschen, Phys. Rev. D49, 840 ~1994!.
51D. Kastor and J. Traschen, Phys. Rev. D47, 5370~1993!.
52The differentiability thresholdk53 can be lowered using the ‘‘almost Gaussian coordinate systems’’ of Ref.

Appendix A, we shall however not be concerned with this here.
53D. Gannon, Gen. Relativ. Gravit.7, 219 ~1976!.
54D. Gannon, J. Math. Phys.16, 2364~1975!.
55L. Abbott and S. Deser, Nucl. Phys. B195, 76 ~1982!.
56A. Ashtekar and S. Das, Class. Quantum Grav.17, L17 ~2000!.
57P. Chrus´ciel, in Topological Properties and Global Structure of Space-Time, edited by P. Bergmann and V. de Sabba

~Plenum, New York, 1986!, pp. 49–59, URL http://www.phys.univ-tours.fr/˜piotr/scans
58R. Bartnik, Commun. Pure Appl. Math.39, 661 ~1986!.
59P. Chrus´ciel, Ann. Inst. Henri Poincare42, 267 ~1985!.
60J. Kijowski and W. Tulczyjew,A Symplectic Framework for Field Theories, Lecture Notes in Physics, Vol. 107

~Springer, New York, Heidelberg, Berlin, 1979!.
61J. Kijowski, Gen. Relativ. Gravit.29, 307 ~1997!.
62J. Kijowski, Gen. Relativ. Gravit.9, 857 ~1978!.
63P. Chrus´ciel, J. Jezierski, and J. Kijowski, URL http://www.phys.univ-tours.fr/;piotr/papers/hamiltonian_structure
64R. Beig, Phys. Lett.69A, 153 ~1978!.
65S. Hawking, J. Math. Phys.9, 598 ~1968!.
66The argument we review has been used by Gibbons in Ref. 18 to obtain a somewhat different inequality, in wh

genus factors are not present. The inequality proposed in Ref. 18 is violated for generalized Kottler metrics wg`

>3.
67Bray’s proof~Ref. 17! of the inequality~VI.6! with Q50, but]S, not necessarily connected, uses a completely differ

technique; in particular it makes appeal to the positive energy theorem which does not hold in the class of ma
considered here.

68The discussion that follows actually applies to all (S,g)’s that can be isometrically embedded into a globally hyperbo
space–timeM in which the null convergence condition holds; further the image ofS should be a partial Cauchy surfac
in M . Finally the intersection ofS with I should be compact. The global hyperbolicity here, and the notion of Cau
surfaces, is understood in the sense of manifolds with boundary, see Ref. 4 for details.

69D. Gilbarg and N. Trudinger,Elliptic Partial Differential Equations of Second Order~Springer, Berlin, 1983!.
70R. Beig and W. Simon, Commun. Math. Phys.144, 373 ~1992!.
71Using the asymptotic behavior ofV(r ) and r (V) it is not too difficult to show that solutions of~VII.3! are uniformly

bounded on@0,̀ !, and approach a non-zero constant at infinity unless identically vanishing. Since solutions of~VII.3! are
defined up to a multiplicative constant, we can choose this constant so that our normalization holds.

72The assumption of spherical symmetry of the level sets of the reference solution made in Ref. 69 is not needed t
Eq. ~VII.16!.

73H. Gönner and J. Stachel, J. Math. Phys.11, 3358~1970!.
74J. Foyster and C. McIntosh, Commun. Math. Phys.27, 241 ~1972!.
75C. Stanciulescu, Spherically symmetric solutions of the vacuum Einstein field equations with positive cosmo

constant, 1998, diploma thesis, University of Vienna.
76P. Chrus´ciel, Class. Quantum Grav.16, 689 ~1999!.
77The possibility thatU is diffeomorphic toS132M ~or some version thereof! is excluded by the fact thatdV does not

vanish onU.
78M. Walker, J. Math. Phys.11, 2280~1970!.
79D. Kennefick and N. O´ . Murchadha, Class. Quantum Grav.12, 149 ~1995!.
80P. Chrus´ciel, in Differential Geometry and Mathematical Physics, Vol. 170 of Contemporary Mathematics, edited by

Beem and K. Duggal~AMS, Providence, 1994!, pp. 23–49.
81W. Simon and R. Beig, J. Math. Phys.24, 1163~1983!.
82M. Anderson, Ann. Henri Poincare´ 1, 977 ~2000!.
83M. Anderson, Ann. Henri Poincare´ 1, 995 ~2000!.
loaded 11 Apr 2001 to 193.52.214.71. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcr.jsp


