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We present a systematic study of static solutions of the vacuum Einstein equations
with negative cosmological constant which asymptotically approach the general-
ized Kottler (“Schwarzschild—anti-de Sitterj’solution, within(mainly) a confor-

mal framework. We show connectedness of conformal infinity for appropriately
regular such spacetimes. We give an explicit expression for the Hamiltonian mass
of the (not necessarily statianetrics within the class considered; in the static case
we show that they have a finite and well-defined Hawking mass. We prove in-
equalities relating the mass and the horizon area ofstatio metrics considered

to those of appropriate reference generalized Kottler metrics. Those inequalities
yield an inequality which is opposite to the conjectured generalized Penrose in-
equality. They can thus be used to prove a uniqueness theorem for the generalized
Kottler black holes if the generalized Penrose inequality can be established.
© 2001 American Institute of Physic§DOI: 10.1063/1.1340869

[. INTRODUCTION

Consider the families of metrics

2m A \ 1
dt?+ k—T——r2> dr2+r2dQ2, k=0,*1, (1.1)

3

2m A
dszz—(k————r2
r 3

ds?=—(A—Ard)dt?+ (A —Ar?)~1dr?2+|A|71dQZ, k==*1, kA>0, reR, (1.2

wheredQ? denotes a metric of constant Gauss curvatumn a two-dimensional manifoléM.
(Throughout this work we assume tifadl is compach. These are well-known static solutions of
the vacuum Einstein equation with a cosmological constgrgome subclasses @il) and(1.2)
have been discovered by de Sittgfl.1) with m=0 andk=1], by Kottle? [Eq. (I.1) with an
arbitrarym andk= 1], and by Naria [Eq. (1.2) with k=1]. As discussed in detail in Sec. VD, the
parameteme R is related to the Hawking mass of the foliatiba const,r = const. We will refer
to those solutions as the generalized Kottler and the generalized Nariai solutions. The chnstant
is an arbitrary real number, but in this paper we will mostly be interested <10, and this
assumption will be made unless explicitly stated otherwise. There has been recently renewed
interest in the black hole aspects of the generalized Kottler solutidriEhe object of this paper
is to initiate a systematic study of static solutions of the vacuum Einstein equations with a negative
cosmological constant.

The first question that arises here is that of asymptotic conditions one wants to impose. In the
present paper we consider metrics which tend to the generalized Kottler solutions, leaving the
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asymptotically Nariai case to future work. We present the following three approaches to

asymptotic structure, and study their mutual relationships: three-dimensional conformal compac-
tifications, four-dimensional conformal completions, and a coordinate approach. We show that
under rather natural hypotheses the conformal boundary at infinity is connected.

The next question we address is that of the definition of mass for such soluticheut
assuming staticitpf the metrics. We review again the possible approaches that occur here: a naive
coordinate approach, a Hamiltonian approach, a “Komar-type” approach, and the Hawking ap-
proach. We show that the Hawking mass converges to a finite value for the metrics considered
here, and we also give conditions on the conformal completions under which the “coordinate
mass,” or the Hamiltonian mass, are finite. Each of those masses come with different normaliza-
tion factor, whenever all are defined, except for the Komar and Hamiltonian masses which coin-
cide. We suggest that the correct normalization is the Hamiltonian one.

Returning to the static case, we recall that appropriately behaved vacuum black holes with
A=0 are completely described by the parameterappearing abov&;1° and it is natural to
enquire whether this remains true for other valued ofn fact, for A<0, Boucher, Gibbons, and
Horowitz*! have given arguments suggesting uniqueness of the anti-de Sitter solution within an
appropriate class. As a step towards a proof of a uniqueness theorem in the general case we derive,
under appropriate hypothesgs lower bounds orfloosely speakingthe area of cross sections of
the horizon, and2) upper bounds on the mass of static vacuum black holes with negative cos-
mological constant. When these inequalities are combined the result goes precisely the opposite
way as a(conjecturedl generalization of the Geroch—Huisken—Iimanen—Penrose ineddatity
appropriate to spacetimes with nonvanishing cosmological constant. In fact, such a generalization
was obtained by Gibbofalong the lines of Geroct, and of Jang and Waltf,i.e., under the
very stringent assumption of the global existence and smoothness of the inverse mean curvature
flow, see Sec. VI. We note that it is far from clear that the arguments of Huisken and Iiffaen,
or those of Bray®!” which establish the original Penrose conjecture can be adapted to the situa-
tion at hand. If this were the case, a combination of this inequality with the results of the present
work would give a fairly general uniqueness result. In any case this part of our work demonstrates
the usefulness of a generalized Penrose inequality, if it can be established at all.

To formulate our results more precisely, consider a static spacetin®gj which might—
but does not have to—contain a black hole region. In the asymptotically flat case there exists a
well-established theorisee Ref. 20, or Ref. 10, Secs. 2 and 6 and references thesgich, under
appropriate hypotheses, allows one to reduce the study of such spacetimes to the problem of
finding all suitable triples¥,g,V), where §,9) is a three-dimensional Riemannian manifold and
V is anon-negativeéunction onX. FurtherV is required to vanish precisely on the boundarg.of
when nonempty:

V=0, V(p)=0&peds. (1.3)

Finally g andV satisfy the following set of equations &
AV=—AV, (1.4)
R;=V~'D;D;V+Ag; (1.5)

(A=0 in the asymptotically flat cageHereR;; is the Ricci tensor of th¢ ‘three-dimensional’)
metric g. We shall not attempt to formulate the conditions on,{g) which will allow one to
perform such a reductiofisome of the aspects of the relationship betweEng(V) and the
associated spacetime are discussed in Sec.]llbBt we shall directly address the question of
properties of solutions ofl.4)—(1.5). Our first main result concerns the topology @ (cf.
Theorem IV.1, Sec. IV; compare Refs. 21 and:22

Theorem 1.1: Let A<0, consider a set¥,g,V) which is C3 conformally compactifiable in
the sense of Definition 1l.1 below, suppose tkla3)—(1.5) hold. Then the conformal boundary at
infinity ., of % is connected.
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Our second main result concerns the Hawking mass of the level setsaff Theorem V.2,
Sec. VD:

Theorem 1.2: Under the conditions of Theorem 1.1, the Hawking massf the level sets of
V is well defined and finite.

It is natural to enquire whether there exist static vacuum spacetimes with complete spacelike
hypersurfaces and no black hole regions; it is expected that no such solutions exist witen
andd..> # S?. We hope that point&2) and(3) of the following theorem can be used as a tool to
prove their nonexistence.

Theorem 1.3: Under the conditions of Theorem I.1, suppose further &&at J, and that the
scalar curvaturd®’ of the metricg’ =V~ ?g is constant or.,.>. Then

(1) If 9,2 is a sphere, then the Hawking massof the level sets o¥ is nonpositive, vanishing
if and only if there exists a diffeomorphisgi > — 3, and a positive constant such thatg
=y*go andV=\Vyo b, with (2, gg,V,) corresponding to the anti-de Sitter space—time.

(2) If 4,2 is a torus, then the Hawking massis strictly negative.

(3) If the genusg., of 4..2 is higher than or equal to 2, we have

m<— ——— (1.6)

with m=m(V) normalized as in Eq(VL.7).

A mass inequality similar to that in poiit) above has been established in Ref. 11, and in fact
we follow their technique of proof. However, our hypotheses are rather different. Further, the mass
here isa priori different from the one considered in Ref. 11; in particular it is not clear at all
whether the mass defined as in Ref. 11 is also defined for the metrics we consider, cf. Secs. Il C
and V A below.

We note that metrics satisfying the hypotheses of péMtabove, with arbitrarily large
(strictly) negative mass, have been constructed in Ref. 23.

As a straightforward corollary of Theorem 1.3 one has

Corollary 1.4: Suppose that the generalized positive energy inequailiym,,(g..) holds in
the class of three-dimensional manifolds,) which satisfy the requirements of poift) of
Definition 111.1 with a connnected conformal infinit§,. >, of genusg.., and, moreover, the scalar
curvatureR of which satisfieR=2A. Then

(1) If mgi(9..=0)=0, then the only solution of Eq8l.4)—(1.5) satisfying the hypotheses of point
(1) of Theorem 1.3 are data for anti-de Sitter space—time.

(2) If myi(g.>1)=—1/(3/=A), then there exist no solutions of Eds4)—(1.5) satisfying the
hypotheses of point3) of Theorem 1.3.

When 4., =5? one expects that the inequalitg=0, with m being the mass defined by
spinorial identities can be established using Witten-type techniguieRefs. 24 and 25 regard-
less of whether or na#3=¢J. (On the other hand, it follows from Ref. 26 that wheps # S?
there exist no asymptotically covariantly constant spinors which can be used in the Witten argu-
ment) This might require imposing some further restrictions on, e.g., the asymptotic behavior of
the metric. To be able to conclude in this case that there are no static solutions without horizons,
or that the only solution with a connected nondegenerate horizon is the anti-de Sitter one, requires
working out those restrictions, and showing that the Hawking mass of the level 3étoaicides
with the mass occuring in the positive energy theorem.

When horizons occur, our comparison results for mass and area read as follows.

Theorem 1.5: Under the conditions of Theorem 1.1, suppose further that the ggno$ 7.2,
satisfiesg,.=2, and that the scalar curvatuRé of the metricg’ =V~ 2g is constant or..>. Let
d,12 be any connected component& for which the surface gravitk defined by Eq(VII.1) is
largest, and assume that
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0< \/ A
K= —E. (|7)

Let my, respectivelyA,, be the Hawking mass, respectively the areaXy, for that generalized
Kottler solution &4,0q,V), With the same genus.., the surface gravity, of which equalsx.
Then

m<mo, Ao(9s3x—1)<A(g9-—1), (1.8)

whereA is the area 0,2 andm=m(V) is the Hawking mass of the level sets \éf Further
m=my if and only if there exists a diffeomorphisgh % — 3., and a positive constait such that
g=y*go andV=\Vyi.

The asymptotic conditions assumed in Theorems 1.3 and 1.5 are somewhat related to those of
Refs. 27-29, 11. The precise relationships are discussed in Secs. IlIB and Il C. Let us simply
mention here that the condition that is constant o..2. is the(local) higher genus analog of the
(globa) condition in Refs. 28 and 29 that the group of conformal isometries of | coincides with
that of the standard conformal completion of the anti-de Sitter space—time; the reader is referred
to Proposition 111.6 in Sec. IlI B for a precise statement.

We note that the hypothesik7) is equivalent to the assumption that the generalized Kottler
solution with the same value af has nonpositive mass; cf. Sec. Il for a discussion. We empha-
size, however, that we do not make amyriori assumptions concerning the sign of the mass of
(%,9,V). Our methods do not lead to any conclusions for those valuaswdfich correspond to
generalized Kottler solutions with positive mass.

With m=m(V) normalized as in EqVI.7), the inequalitym=m, takes the following explicit
form:

(A+2k)VKkZ=A+253
m< A2 , (1.9)

while A(g..— l)BAO(gﬁlg— 1) can be explicitly written as

k+JKk2—A?

A(g.—1)=4m(gys—1)| —

(1.10)

[The right-hand sides of Eqd.9) and(1.10) are obtained by straightforward algebraic manipula-
tions from(ll.1) and(11.10).]

It should be pointed out that in Ref. 30 a lower bound for the area has also been established.
However, while the bound there is sharp only for the generalized Kottler solutionsnth, our
bound is sharp for all Kottler solutions. On the other hand, in Ref. 30 it is not assumed that the
space—time is static.

If the generalized Penrose inequalityhich we discuss in some detail in Sec.) Volds,

k A&iE 1/2 A AﬁiE 3/2
ZMHaMU)Zi; -9\ 7| — 37 (1.11)

(with the 9;X’s, i=1,... k, being the connected componentsdf, the Aaig’s—their areas, and
the gaiz's—the genera therepfve obtain uniqueness of solutions:

Corollary 1.6: Suppose that the generalized Penrose inequélityl) holds in the class of
three-dimensional manifold(g) with scalar curvaturdr satisfyingR=2A, which satisfy the
requirements of pointl) of Definition Ill.1 with a connnected conformal infinit,,> of genus
0.>1, and which have a compact connected boundary. Then the only static solutions of Egs.
(1.4)—(1.5) satisfying the hypotheses of Theorem 1.5 are the corresponding generalized Kottler
solutions.
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II. THE GENERALIZED KOTTLER SOLUTIONS

We recall some properties of the solutiofisl). Those solutions will be used as reference
solutions in our arguments, so it is convenient to use a subscript 0 when referring to them. As
already mentioned, we assume<0 unless indicated otherwise. Faog e R, letry be the largest
positive root of the equatich

2mg A
220 oo
Vo=k— ———3r*=0. (I1.1)
We set
2my A\ 71 5
So={(r,v)[r>rg,ve?M}, go= k_T_§r2 dr+r2dQ2, (11.2)

where, as beforedQ?2 denotes a metric of constant Gauss curvatdren a smooth two-
dimensional compact manifoffM. We denote the corresponding surface gravity<gy [Recall
that the surface gravity of a connected component of a hor#oXi] is usually defined by the
equation

(XXy) ulnpg = — 24X (11.3)

JTR)

where X is the Killing vector field which is tangent to the generatorsNyiX]. This requires
normalizing X; here we impose the normalizatiirthat X=4/dt in the coordinate system of

(1.1).] We set
' my Ar\?
Wo(r)=9goDiVoD;Vo= 23 (1.4)
Whenmy=0 we note the relationship
A 2
Woz—g(vo—k), (11.5)
which will be useful later on, and which holds regardless of the topologiVaf
Suppose, now, thdt=—1, and thatm, is in the range
Mg € [ M, 0], (11.6)
where
! (11.7)
M= — ——. .
crit 3m

Herem,,; is defined as the smallest valuerof for which the metricgl.1) can be extended across
a Killing horizon®" Let us show that Eq(lI.6) is equivalent to

! \/ 3 (1.8)
roe|—=,\/ — |- .
VAV A
In order to simplify notation it is useful to introduce
1 A
l—ZE - 5 (||.9)
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Now, the equatiorVy(1/v3)=0 impliesm=m;. Next, an elementary analysis of the function
r3/12—r—2my (recall thatk=—1 in this sectioh shows thai1) V has no positive roots fom
<Mgit; (2) for m=m; the only positive root i$/v3; (3) if rg is the largest positive root of the
equationVy(ry) =0, then for eachmy>m;; the radiusry(mg) exists and is a differentiable
function of my. Differentiating the equationyVy(rg) =0 with respect tan, gives

12 amg |\ 12 amg
It follows that for r=1/v3 the functionry(mg) is a monotonically increasing function on its
domain of definition m,;;,), which establishes our claim.
We note that the surface graviiy is given by the formula

My To
Ko= on(ro)=r7+|—z. (11.10)
0

which gives

(9KO 1 1 2m0 (9[’0
oty Rl Iy R al el
amg rg I ro | dmg

Equation(I1.10) shows thatx, vanishes whem,=m.;.3* Under the hypothesis than,<0, it
follows from what has been said abo(& that d«qy/dmg is positive;(b) that we have

o,\/—%}, (I1.12)

when (11.6) holds, and(c) that, under the current hypothesesloand A, (I1.6) is equivalent to
(11.11) for the metricq1.1). While this can probably be established directly, we note that it follows
from Theorem 1.5 thatll.11) is equivalent ta(ll.6) without having to assume thai,<0.

In what follows we shall need the fact that in the above ranges of parameters the relationship
Vo(r) can be inverted to define a smooth functio(Vy):[0,~)—R. Indeed, the equation
(dVo/dr) (rein =0 yields rgrit::%mo//\; whenk=—1, A<0, and when(l.6) holds one finds
Vo(r ¢rit) <0, with the inequality being strict unlegs=m;;. ThereforeVy(r) is a smooth strictly
monotonic function i ry,%), which implies in turn that (V) is a smooth strictly monotonic
function on (0%); furtherr (V) is smooth up to 0 except when=mc;;.

Ko €

lll. ASYMPTOTICS

A. Three-dimensional formalism

As a motivation for the definition below, consider one of the mef(lids and introduce a new
coordinatex e (0,Xq] by

r’ 1—kx?
= (I1.1)

with X, defined by substituting, at the left-hand side ofill.1). It then follows that

2mxe

-1
g=1%x"2 ) dx®+(1—-kx?)dQZ|.

(1—kx2)‘1<1——
IV1—kx?

Thus the metric
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— (|22
g'=(1""x9g

is smooth up to boundary metric on the compact manifold with boun&_aﬁ[o,xg]sz.

FurthermorexV, can be extended by continuity to a smooth up to boundary functidn;emwith
xVo= 1. This justifies the following definition.

Definition IIl.1: Let X be a smooth manifoldall manifolds are assumed to be Hausdorff,
paracompact, and orientable throughputith perhaps a compact boundary which we denote by
43, when non empty* Suppose thag is a smooth metric ol, and tha is a smooth nonnegative
function on;, with V(p)=0 if and only if pe dX.

(1) (2,9) will be said to beC', i e NU{}, conformally compactifiable or, shortly, compactifi-
able, if there exists £'** diffeomorphismy from 3\d3% to the interior of a compact Rie-
mannian manifold with boundaryS(~3U4..3,g), with 9,.5NS =, and aC' function
'3 —R* such that

g=x* (0 Q). (I11.2)
We further assume thdtv=0}=J..2, with dw nowhere vanishing o..%, and thatg is of
C' differentiability class or®.. ' '
(2) Atriple (%,9,V) will be said to beC', i e NU{=}, compactifiable if £,g) is C' compacti-

fiable, and ifVw extends by continuity to &' function on¥,
(3) with

lim Vo>0. (11.3)

w—0
We emphasize thal itself is allowed to have a boundary on whighvanishes,
Jx={peX|V(p)=0}

If that is the case we will have

95 =05U4,3.

The conditions above are not independent when the “static field equat{@&w. (1.4)—(1.5)]
hold:
Proposition 111.2: Consider a triple ¥,9,V) satisfying Eqs(1.3)—(1.5).

(1) The condition thatdw|q has no zeros oa..% follows from the remaining hypotheses of point
1 of Definition I1.1, when those hold with=2.

(2) Suppose thatY,g) is C' compactifiable withi =2. Then lim, .,V exists. Further, one can
choose duniquely defineglconformal factor so thab is theg distance froms,.2 . With this
choice of conformal factor, whefill.3) holds a necessary condition that,g,V) is C'
compactifiable is that

(4R; —Rg; N, =0, (11.4)
wheren is the field of unit normals t@..>..

(3) (2,9,V) is C* compactifiable if and only if¥,g) is C* compactifiable and Eqslll.3) and
(11.4) hold.

Remarks(1) When &,g) is C* compactifiable but EqlIl.4) does not hold, the proof below

shows thalVw is of the formay+ a;w? log w, for some smooth up-to-boundary functiomg and
aq. This is perhaps not so surprising because the nature of the equations satisfjeshty/
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suggests that both and Vw should be polyhomogeneous, rather than smo@iRolyhomoge-
neous” means thag andVw are expected to admit asymptotic expansions in terms of powers of
w and logw neard,.> under some fairly weak conditions on their behaviov gt ; cf., e.g., Ref.
36 for precise definitions and related resulE.om this point of view the hypothesis that () is
C” compactifiable is somewhat unnatural and should be replaced by that of polyhomogeigeity of
atd,.>.

(2) One can prove appropriate versions of p@Bjtabove for §,g)’s which areC' compac-
tifiable for finitei. This seems to lead to lower differentiability ofVLheard..> as compared to
g, and for this reason we shall not discuss it here.

(3) We leave it as an open problem whether or not there exist solutiofi8p#(1.5) such that
(X,0) is smoothly compactifiable, such thdtcan be extended by continuity to a smooth function

on 2, while (111.3) does not hold.

(4) We note that(lll.4) is a conformally invariant condition becauseandg are uniquely
determined byg. However, it is not conformally covariant, in the sense thaj i conformally
rescaled, therlll.4) will not be of the same form in the new rescaled metric. It would be of
interest to find a form oflll.4) which does not have this drawback.

(5) The result above has counterparts for one-point compactifications in the asymptotically flat
case(cf., e.g., the theorem in the Appendix of Ref. 35.

Proof: Let e=Vw. After suitable identifications we can without loss of generality assume that
the mapy in (11.2) is the identity. Equation$l.4)—(1.5) together with the definition o= w?g
lead to the following:

— D'wDia [Aw R
Aa—3 +|—+ =]a=0, (1.5)
w 2
— Skwaka_ —_ Eﬁjw Ao R o

We have also useB=2A which, together with the transformation law of the curvature scalar
under conformal transformations, implies

®?R=6|dw|;+2A ~4oA . (N.7)

In all the equations here barred quantities refer to the mgtrioint(1) of the proposition follows
immediately from Eq(ll.7).

To avoid factors of— A/3 in the remainder of the proof we rescale the megyiso thatA
= —3. Next, to avoid annoying technicalities we shall present the proof only for smoothly com-
pactifiable &,9), i.e., fori=o; the finitei cases can be handled using the results in Ref. 36,
Appendix A and Ref. 37, Appendix A. Suppose, thus, tlhate. As shown in Ref. 38, Lemma 2.1
we can choos@ andg so thatw coincides with theg distance froms.,2 in a neighborhood of
92 we shall use the symbal to denote this function. In this case we have

Aw=D, (111.8)

wherep is the mean curvature of the level setsuof x. Further|dw|g=1 so that(I1.8) together
with (11.7) give R=—4p/x, in particularp],—,=0. We can introduce Gauss coordinate$ x*)

neard,.> in which x!=xe[0x,), while the *)=v’s form local coordinates o#..3, with the
metric taking the form
g=dx?+h, h(dy, )=0. (11.9)

To prove point(2), from Eq.(l1l.6) we obtain
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— B,BJw Aw R)|_

wﬁwﬁjwa((uflaja)=5iw5jw
Equations(111.8)—(I11.10) lead to

xax(xlaxa)=(ﬁxx— 9 a. (11.11)

At eachv € 4,.2 this is an ODE of Fuchsian type far(x,v). Standard results about such equa-
tions show that for each the functionsx— a(x,v) andx— dya(X,v) are bounded and continuous
on[0xXg). Integrating(lll.11) one finds

dya=xB(v)+

— R
RXX—;)a(o,v)xlnerO(lenx), (111.12)

where B8(v) is a (v-dependentintegration constant. By hypothesis there exist no poinis,at
such thaiw(0p) =0, Eqgs.(111.11) and(Il.12) show tha'raf(a blows up atx=0 unlesgl11.4) holds,
and point(2) follows.

We shall only sketch the proof of poi8): Standard results about Fuchsian equations show
that solutions of EqJ(lll.11) will be smooth inx whenever[R,,— (R/4)](x=0,p) vanishes
throughoutd..X. A simple bootstrap argument applied to Efl.6) with (ij)=(1A) shows that
a is also smooth in. Commuting Eq(II1.6) with (xax)iaf, whereg is an arbitrary multi-index,
and iteratively repeating the reasoning outlined above establishes smoothagemdf in v and
X. O

A consequence of conditiof8) of Definition Ill.1 is that the function

v'=vi

when extended t& by settingV’'=0 ond..2, can be used as a compactifying conformal factor,
at least away from¥: If we set

g/ :V_Zg,

theng’ is a Riemannian metric smooth up to boundary%WE. In terms of this metric Egs.
(1.4)—(1.5) can be rewritten as

A'V'=3V'W+AV, (11.13)
Rj=—2VD/D{V". (111.14)
HereR|, is the Ricci tensor of the metrig’, D’ is the Levi-Civita covariant derivative associated

with g’, while A’ is the Laplace operator associated with Taking the trace oflll.14) and
using (111.13) we obtain

R’ =—6W-2AV?, (111.15)
where
W=D;VD'V. (11.16)
Defining
W'=g"ID/V'D/V'=(V')?W, (1.17)
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Eq. (I11.15) can be rewritten as
6W' =—2A—R'(V')2. (111.18)

If (2,9,V) is C? compactifiable theR’ is bounded in a neighborhood &f, and since/ blows
up atd..2 it follows from Eq. (111.15) that so doedV, in particularW is strictly positive in a
neighborhood o#..2. Further Eq(Il.18) implies that the level sets &f are smooth manifolds in
a neighborhood 0#..2, diffeomorphic tod..> there.

Equations(l.4)—(1.5) are invariant under a rescaling—AV, A e R*. This is related to the
possibility of choosing freely the normalization of the Killing vector field in the associated space—
time. Similarly the conditions of Definition 1.1 are invariant under such rescalings wit®.
For various purposes—e.g., for the definitiQsil.1) of surface gravity—it is convenient to have
a unique normalization o¥/. We note that if £,g,V) corresponds to a generalized Kottler
solution (¢,99,Vo), then(l.1) and (I1.4) together with(11.16) give 6W,=—2A(1—k(V()?)
+0((V¢)?) so that from(ll1.15) one obtains

Rolss=—2Ak. (I11.19)

We have the following: _
Proposition 11.3: Consider aC'-compactifiable triple ¥,9,V), i=3, satisfying equations
(1.4)—(1.5).
(1) We have
?R'[x=0=3R’|x=0, (111.20)
where?R’ is the scalar curvature of the metric inducedddy=V ™~ 2g on the level sets o¥,

andR’ is the Ricci scalar ofy’.
(2) If R" is constant ord..%, replacingV by a positive multiple thereof if necessary we can

achieve

R'|, s=—2AK, (11.22)
wherek=0, 1 or— 1 according to the sign of the Gauss curvature of the metric induced by
on d.,.2.

Remark:Whenk=0 Eq. (lll.21) holds with an arbitrary normalization &f.

Proof: Consider a level s€tV=const of V which is a smooth hypersurface Ky with unit
normaln;, induced metrich;;, scalar curvaturér, second fundamental formy; defined with
respect to an inner pointing normal, mean curvapueh' p;; = hfh}"D(knm) ; we denote byy;; the
trace-free part op;; : q;;=p;; —1/2h;;p. Let Ry, respectiverRi’jk , be the Cotton tensor of the
metric g;; , respectivelygi’j ; by definition

Rijk=2(Ri;j— 3 Rg[j):x » (11.22)

where square brackets denote antisymmetrization with an appropriate combinatoria{f&ttar
the equation aboyeand a semicolon denotes covariant differentiation. We note the useful identity
due to Lindbloni®

RixR"1*=V°R; R =8(VW)?q;;q" + V?h'ID;WD;W. (1n.23)

When (,g,V) is C* compactifiable the functioR;; R’ is uniformly bounded on a neighbor-
hood ofX, which gives

(VW)%q;;q'<C (111.24)

in that same neighborhood, for some constantquationg111.24) and(l1.17) give
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lalg=0((V")?). (111.25)

Let qi’j be the trace-free part of the second fundamental fprjmof the level sets oV’ with
respect to the metrigi’j , defined with respect to an inner pointing normal; we hraiYec Qi /V, so
that

la’|g=0((V")?). (111.26)

Throughout we usé- |, to denote the norm of a tensor field with respect to a métric
Let us work out some implications ¢fil.26); Egs. (111.13)—(111.15) lead to

!

A+

- |V'=0. (I1.27)

Equationg111.17) and(l11.18) show thatdV’ is nowhere vanishing on a suitable neighborhood of
d»2. We can thus introduce coordinates there so YHat x. If the remaining coordinates are Lie
dragged along the integral curves @fthe metric takes the form

g'=(W)"tdx®+h’, h'(dy,-)=0. (111.28)

Equations(111.27)—(111.28) give then
, 1 X
PN 120W
and in the second step we have ugéiti18). Here p’ = W' d,(\/deth’)/\/deth’ is the mean

curvature of the level sets of measured with respect to the inner pointing norma W' 9, .
Equation(lll.14) implies

M-

L
— 4R , (I11.29)

—X—
X

P AT Ha’in’p’\/’ D,iV,D,jV, NI\’ D,iV,DiIW, _aXW,
in the coordinate system of E¢I1.28). From (111.18) we get
. R
Ri’jn"n’1=?+0(x). (111.30)
From the Codazzi—Mainardi equation,
(—2R/+R'g/)n"'n"1=R"+q/q"1 - 3p’?, (11.31)

where?R’ is the scalar curvature of the metric inducedddyon 4.3, one obtains

(2R +R'g/)n"'n"1=2R’+0(x), (11.32)
where we have usedll.26) and(I11.29). This, together with Eq(l11.30), establishes EdlII.20).
In particularR’|5mE is constant if and only ifR’ is, andR’ at x=0 has the same sign as the
Gauss curvature of the relevant connected componet df Under a rescaliny —\V, A>0,
we haveW—\2V; Eq. (11.15) shows thatR’ —\?R’, and choosing\ appropriately establishes
the result. O
We do not know whether or not there exist smoothly compactifiable solutions of(E&js-
(1.5) for which R’ is not locally constant a4..2, it would be of interest to settle this question.
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B. Four-dimensional conformal approach

Consider a space—timéW,*g) of the formM=RXx 3 with the metric*g
4g=-V2dt®*+g, 9(é,-)=0, 4V=d,9=0. (11.33)

By definition of a space—timég has Lorentzian signature, which implies tigahas signature- 3;

it then naturally defines a Riemannian metric Brwhich will still be denoted byg. Equations
(1.4)—(1.5) are precisely the vacuum Einstein equations with cosmological conatdnt the

metric 4g. It has been suggested that an appropfigteframework for asymptotically anti-de

Sitter space—times is that of conformal completions introduced by Peffroee work of
FriedricH! has confirmed that it is quite reasonable to do that, by showing that a large class of
space—timegnot necessarily stationgryvith the required properties exist; some further related
results can be found in Refs. 42 and 43. In this approach one requires that there exists a space—
time with boundary §1,%g) and a positive functiof):M—R™, with Q vanishing precisely at

IC M, and withdQ without zeros orl, together with a diffeomorphier:M—d\W\l such that

‘g=E*(Q "2 “g). (I1.34)

The vector fieldX= ¢, is a Killing vector field for the metri¢lll.33) on M, and it is well known
(cf., e.g., Ref. 44, Appendix Bhat X extends as smoothly as the metric allows ;teve shall use
the same symbol to denote that extension. We have the following trivial observation.

Proposition 111.4: Assume thatX,g,V) is smoothly compactifiable, thevi =R X3, with the
metric (111.33) has a smooth conformal completion withdiffeomorphic toRxd..2. Further
(M,%g) satisfies the vacuum equations with a cosmological condtahtind only if Egs.(1.4)—
(1.5) hold.

The implication the other way around requires some more work.

Theorem 1I1.5: Consider a space—timé,*g) of the formM=RX 3, with a metric*g of
the form (111.33), and suppose that there exists a smooth conformal complekibfig) with
nonemptyl. Then

(1) X is timelike onl; in particular it has no zeros there;

(2) The hypersurfaces=const extend smoothly tg

(3) (£,9,V) is smoothly compactifiable;

(4) there exists dperhaps differentconformal completion of N1,%g), still denoted by ¥,g),
such thatM = Rx S, where (5,5) is a conformal completion of¥,g), with X= g, and with

‘g=—a?dt?+7g, G4, )=0, X(a)=Lyxg=0. (11.35)

Remark:The new completion described in poid) above will coincide with the original one
if and only if the orbits ofX are complete in the original completion.

Proof: As the isometry group mapd to M, it follows that X has to be tangent th On M
we have®g(X,X)>0 hence’g(X,X)=0 onl, and to establish poir(tl) we have to exclude the
possibility that*g(X,X) vanishes somewhere dn

Suppose, first, thaX(p)=0 for a pointpe|. Clearly X is a conformal Killing vector of‘g.
We can choose a neighborhoddof | so thatX is strictly timelike onU\I. There existe>0 and
a neighborhoodOCU of p such that the flowg,(q) of X is defined for allge O and t
e[ —€,€]. Theg,'s are local conformal isometries, and therefore map timelike vectors to timelike
vectors. SinceX vanishes ap the ¢,'s leavep invariant. It follows that theg,’'s map causal
curves througlp into causal curves throughy therefore they mapd™ (p) into itself. This implies
that X is tangent todJ ™ (p). However this last set is a null hypersurface, so that every vector
tangent to it is spacelike or null, which contradicts timelikenesXaodn dJ" (p)NU#IF. It
follows thatX has no zeros oh.
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Suppose, next, that(p) is lightlike at p. There exists a neighborhood pfand a strictly
positive smooth functions such thatX is a Killing vector field for the metrigy?. Now the
staticity condition

X[aVBXy]:O (”|36)

is conformally invariant, and therefore also holds in fgemetric. We can thus use the Carter—
Vishweshvara lemnfa*®to conclude that the sét={qe M|X(q) %0} N d{*g(X,X)<0} =T is a
null hypersurface. By hypothesis there exists a neighbortéad | in M such thatNNMNU
=, henceNCI. This contradicts the fatt that the conformal boundary of a vacuum space—
time with a strictly negative cosmological constaktis timelike. It follows thatX cannot be
lightlike on | either, and pointl) is established.

To establish poin€2), we note that Eq(ll.36) together with point1l) show that the one-form

A= X*dx”

— 4y
4§aﬁxaxﬁ' g,uv

is a smooth closed one-form on a neighborh@af I, hence on any simply connected open
subset ofO there exists a smooth functioh such thatA=dt. Now (Il1.33) shows that the
restriction ofA to M is dt, which establishes our claim. From now on we shall drop the bar, on

and writet for the corresponding time function dvi.
Let

Ezl\Wﬂ{tzo}, X:E|t=01 w:Q|t=O7
whereZ and() are as in(111.34); from Eq. (111.34) one obtains
g9=x*(0?9),

which shows that 2_@) is a conformal completion of ,g). We further haveV?w?
=49(X,X) |i=00?="*9(X,X)|;=o., Which has already been shown to be smoothly extendiblé to
and strictly positive there, which establishes pdBjt

There exists a neighborhoatof 2, in M on which a new conformal factd® can be defined
by requiringQ |- o= w, X(Q)=0. Redefining'g appropriately and making suitable identifications
so thatE is the identity, Eq(IIl.34) can then be rewritten o as

9=—(vQ)2dt?>+ 0?g. (11.37)

All the functions appearing in Edl11.37) are time independent. The new manifditi defined as

2 X R with the metric(l11.37) satisfies all the requirements of poif), and the proof is com-
plete. O

In addition to the conditions described above, in Refs. 28 and 29 it was proposed to further
restrict the geometries under consideration by requiring the group of conformal isometrigs of
be the same as that of the anti-de Sitter space—time, namely the universal covering group of
0(2,3); cf. also Ref. 43 for further discussion. While there are various ways of adapting this
proposal to our setup, we simply note that the requirement on the group of conformal isometries
to beO(2,3) or a covering thereof implies that the metric induced @locally conformally flat.
Let us then see what are the consequences of the requirement of local conformal flatgess of
our context; this last property is equivalent to the vanishing of the Cotton tensor of the hgetric
induced by*g on|. As has been discussed in detail in Sec. Il A, we can choose the conformal
factor Q) to coincide withV 1, in which case Eq(lIl.37) reads

4q'=4g/V2=—dt?+V-2g=—dt?+g’, (111.38)
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with g’ =V~ 2g already introduced in Sec. lll A. It follows that
lg=4g’|,= —dt?+h’, (11.39)

whereh’ is the metric induced on,. 2 =1 ﬂgby g'. Let'RiJ— denote the Ricci tensor 6f; from
(111.39) we obtain

'Ri=0, 'Rap=2Raz. (I11.40)

where?R g is the Ricci tensor of’. In particular thexxA component of the Cotton tensti;,
of 'g satisfies

|R — ZR'A
XXAT 4 .

Point(1) of Proposition 111.3, see Eql11.20), shows that the requirement of conformal flatness of
'g implies thatR’ is constant ory..S. Conversely, it is easily seen frofill.40) that a locally
constantR’—or equivalently?R—on 4.3 implies the local conformal flatness tf. We have
therefore proved:

Proposition 111.6: Let (2,g,V) beC' conformally compactifiablé =3, and satisfy1.3)—(1.5).
The conformal boundarfix 4.3 of the space—timeN =Rx3,%g), *g given by (111.33), is
locally conformally flat if and only if the scalar curvatuf®’ of the metricV~2g is locally
constant orv..>. This is equivalent to requiring that the metric induced\by?g on 4.3 has
locally constant Gauss curvature.

C. A coordinate approach

An alternative approach to the conformal one discussed above is by introducing preferred
coordinate systems. As discussed in Ref. 27, Appendix D, coordinate approaches are often equiva-
lent to conformal approaches when sufficiently strong hypotheses are made. We stress that this
equivalence is a delicate issue when finite degrees of differentiability are assumed, as arguments
leading from one approach to the other often involve constructions in which some differentiability
is lost.

In any case, the coordinate approach has been used by Boucher, Gibbons, and Hadrowitz
their argument for uniqueness of the anti-de Sitter metric within a certain class of static space—
times. More precisely, in Ref. 11 one considers metrics which are asymptotic to generalized
Kottler metrics withk= 1 in the following strong sense: i, denotes one of the metri¢s1) with
k=1, then one assumes that there exists a coordinate systexj such that

g=go+O(r ~2)dt?+O(r ~®)dr?+ O(r) (remaining differentials notinvolvingr)
+0O(r ~ 1) (remaining differentials involvingr). (1.41)

We note that in the uniqueness assertions of Ref. 11 one makes appeal to the positive energy
theorem to conclude. Now we are not aware of a version of such a theorem which would hold
without some further hypotheses on the behavior of the metric. For example, in such a theorem
one is likely to require that the derivatives of the metric also fall off at some sufficiently high rates.
In any case the argument presented in Ref. 11 seems to implicitly assume that the asymptotic
behavior ofg" described above is preserved under differentiation, so that the corrections terms in
(I11.41) give a vanishing contribution when calculatifV|3—|dVo|3 and passing to the limit
r—oo, with go—the anti-de Sitter metric. While it might well be possible that Eggl)—(1.5)
force the metrics satisfyingll.41) to have sufficiently good asymptotic properties to be able to
justify this, or to apply a positive energy theoréfrthis remains to be establish&t.

It is far from being clear whether or not a general metric of the fdith41l) has any
well-behaved conformal completions. For example, the coordinate transforngikibin together
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with a multiplication by the square of the conformal facter x brings the metri¢lll.41) to one
which can be continuously extended to the boundary, but if ¢hlyll) is assumed then the
resulting metric will not be differentiable up to boundary on the compactified manifold in general.
There could, however, exist coordinate systems which lead to better conformal behavior when
Egs.(1.4)—(1.5) are imposed.

In any case, it is natural to ask whether or not a metric satisfying the requirements of Sec.
Il A will have a coordinate representation similar idl.41). A partial answer to this question is
given by the following result; see Ref. 27 for a related discussion. While the conclusions in Ref.
27 appear to be weaker than ours, it should be stressed that in Ref. 27 staticity of the space—times
under consideration is not assumed.

Proposition 111.7: Let (2,9,V) be aC' compactifiable solution of Eqgl.4)—(1.5), i=3.

Define aC'~2 functionk=k(x*) on 4..3 by the formula
R'|,s=—2Ak. (11.42)

(1) RescalingV by a positive constant if necessary, there exists a coordinate systeff) (ear
9.2 in which we have

V2=—+Kk, (11.43)

r2

~ 2u\?t g
I—z+k—7“) dr2+0(r ~3)dr dxA+ r2hagt O(r 1)) dx? dx® (111.44)

g:

(recall thatl>= —3A 1), for somer-independent smooth two-dimensional metrig with Gauss
curvature equal t& and for some functiope= w(r,x*). Further

EABgAgzz(r2—$+0(r2)), (I11.45)

whereh”B denotes the matrix inverse fg while

13 6R’

o (111.46)

Moo= lIm p=
)

— 00

x=0

(2) If one moreover assumes tHat is locally constant om..2,, then Eq(l11.44) can be improved
to
r2

2u\ "t oo -1
9=|pz +k- T) dr?+(r?hag+O(r ™ H)dx* dx®, (I1.47)

with hag having constant Gauss curvatuke-0,=1 according to the genus of the connected
component of,,% under consideration.

Remarks{1) The function &,x*)— u(r = 1/x,x*) is of differentiability clas<C' 2 on'S, with

the function &,x*)— (u/r)(r=1/x,x*) being of differentiability clas<' 2 on s,
(2) In Egs.(1l.44) and(111.47) the error termgO(r ~!) satisfy
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FRop, 0 0(r ) =0(r179)

for O=s+t<i—3.

(3) We emphasize that the functidndefined in Eq.(111.42) could a priori be x* dependent.

In such a case neither the definition of coordinate mass of Sec. V A nor the definition of Hamil-
tonian mass of Sec. V B apply.

(4) It seems that to be able to obtdiitl.41), in addition to the hypothesis th&' is locally
constant ond,.2, one would at least need the quantity appearing at the right-hand side of Eq.
(111.46) to be locally constant or..2 as well. We do not know whether this is true in general; we
have not investigated this question as this is irrelevant for our purposes.

Proof: Consider, neaw..2, the coordinate system of E@lI.28), from Egs.(l11.29) and
(111.18) we obtain

_ 3.
d(In dethag) = — 2kx— ILx2+ 0%, (111.48)

las in(11.9), k as in(11.42), u.. as in(I11.46). This, together with Eq(ll1.26), leads to

’
AB

Fraln —2xkhpg+ O(x?)=hpg=(1—kx?)I?hag+O(x%),

whereﬁABE (112) hpglx=o. Proposition 111.3 shows that is proportional to the Gauss curvature
of hag. It follows now from (111.18) that

L 17 R
9=x""9'= 2| 1-—5

-t 1—kx?
dx2+[(x—2)h;\3|xo+ O(x3) (dx* dxB.

The above suggests to introduce a coordimavéa the formul&®

Suppose, first, that is locally constant 0.3, thenk equalsk=0,+ 1 according to the genus of
the connected component &£ under consideration, and one finds

r2 -1 2 Rr|2x2 -1 r2
— 2 ’ -1 A B
g= |—2+k 1+r—2 k— 6 )] dre+ |_2hAB|X:O+O(r ))dX dx
r2 2 -1 r2
=<|—2+k—7'u> dr2+ l—zh’AB|X_0+O(r1)>dxAde,

where the “mass aspect” function= u(r,x*) is defined as

) R’I2x2_ r y
6 | 2

12 R'I2 K22
1k —

-+
6 r?

rl2/1 o k2
=5 E(R -R |x:0)_r_2 :

(111.50)

ME—E

This establishes Eqélll.43) and(111.47). Whenk is not locally constant an identical calculation
using the coordinate defined in Eq.(111.49) establishes Eqlll.44)—the only difference is the
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occurrence of nonvanishing error terms in thedx” part of the metric, introduced by the angle

dependence d. It follows from Eq.(I11.50)—or from thek version thereof whek is not locally
constant—that

1B R o1
FE100x | +0(r ),
x=0

which establishes EdlI1.46). Equation(l11.45) is obtained by integration of EdlI1.48). O

IV. CONNECTEDNESS OF 4.2,

The class of manifolds considered so far could in principle corfi&girfor which neithers..2,
nor 2, are connected. Under the hypothesis of staticity the question of connectedn&ssgsof
open; we simply note here the existence of dynamicanstationary solutions of Einstein—
Maxwell equations with a nonconnected black hole region with positive cosmological constant
AP0 As far asg..S is concerned, we have the following:

Theorem IV.1: Let (2,g,V) be aC' compactifiable solution of Eq$l.4)—(1.5), i=3. Then
d2 is connected.

Proof: Consider the manifold = RX 3, with the metric(111.33); its conformal completion

M =RX3 with the metric*g/V? is a stably causal manifold with boundary. We wish to show that
it is also globally hyperbolic in the sense of Ref. 4, namely thatt is strongly causal an(?) for
eachp,qeM the setJ*(p)NJ (q) is compact. The existence of the global time function
clearly implies strong causality, so it remains to verify the compactness condition. Now a path
I'(s)=(t(s),y(s))eRxX is an achronal null geodesic fronp=(t(0),y(0)) to q
=(t(1),y(1)) if and only if y(s) is a minimizing geodesic betweep(0) and y(1) for the
“optical metric” V~2g. Compactness af " (p)NJ~(q) is then equivalent to compactness of the
V~2g distance balls; this latter property will hold wheB ( 4..3,V~?g) is a geodesically com-
plete manifold(with boundary by (an appropriate version pthe Hopf—Rinow theorem.

Let us thus show that¥,V~2g) is geodesically complete. Suppose, first, thit=; the
hypothesis tha® has compact interior together with the fact thattends to infinity in the
asymptotic regions implies th&t=V,>0 for some constant,. This shows that¥,V~2g) is a
compact manifold with boundarg..3., and the result follows\When the metric induced by~ 2g
on 4.2, has positive scalar curvature connectedness, &f can also be inferred from Ref. 21.

Consider, next, the cas& # . It is well known that/dV|, is a nonzero constant on every
connected component @B, [cf. the discussion around E@VI11.2)]; therefore we can introduce
coordinates nea#, so thatV=x, with the metric taking the form

V7 2g=x"2((dx)?+ hag(x,x*)dx* dxB), (IV.1)

where thex”'s are local coordinates oa3. It is elementary to show now fromiV.1) that
(2U .2,V 2g) is a complete manifold with boundary, as claimed.

When ,g) is smoothly compactifiable we can now use Theorem 2.1 of Ref. 4 to infer
connectedness of..2, compare Ref. 22, Corollary, Sec. Ill. For compactifications with finite
differentiability we argue as follows: For smadl let A be the mean curvature of the sets
{x=s}, wherex is the coordinate of Eq(lll.9). In the coordinate system used there the unit
normal to those sets pointing away fram3s equalsxdy; if (2,9,V) is C* compactifiable the

tensor fieldh appearing in Eq(I11.9) will be C* so that?

1 x3 —
8,(\detgn') = —3,(x ?Vdeth)=—2+0(x).
vdetg Vdeth

It follows that for s small enough the sefs<=s,t= 17} are trapped, with respect to the inward
pointing normal, in the space—timex >, with the metric(l11.33). Suppose that..> were not

A=
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connected, then thogeompact sets would be outer trapped with respect to every other connected
component ofd,.%. This is, however, not possible by the usual global arguments, cf., e.g., Refs.
53 and 54 or Ref. 37, Sec. 4 for details. O

V. THE MASS
A. A coordinate mass M,

There exist several proposals how to assign a rivass a space—time which is asymptotic to
an anti-de Sitter space—tim&?%°>185¢t seems that the simplest way to do tlias well as to
extend the definition to the generalized Kottler context considered Ipeogeeds as follows:
consider a metric defined on a coordinate patch covering the set

S = {t=ty,r=R,(x") e 2M} (V.1)

(which we will call an “end”), and suppose that in this coordinate system the functigpsare
of the form(1.1) plus lower order terms

2m A o(1) 2m A o(1)\ !
gtt:_( 2)+ ) grr:( 2 —

3

3 r '
) ) (V.2)
g'[/.L:O(l)v Iu‘7£t1 ng:O(l)v M7&r1 gAB_r hAB:o(r )1

for some constant, and for some constant curvaturegndr independentmetric hyg dx” dxB

on2M. Then we define the coordinate mads of the endS. . to be the parameten appearing

in (1.1). This procedure gives a unique prescription of how to assign a mass to a metric and a
coordinate system OB ..

There is an obvious coordinate dependence in this definition ket Indeed, in that case
a coordinate transformatian—\r, t—t/\, dQZ—\~2dQZ, where\ is a positive constant, does
not change the asymptotic form of the metric, whitegets replaced by ~3m. When?M is
compact this freedom can be removed, e.g., by requiring that the aréa wiith respect to the
metric dﬂﬁ be equal to 4, or to 1, or to some other chosen constant. kcer+ 1 this ambiguity
does not arise because in this case such rescalings will change the asymptotic form of the metric,
and are therefore not allowed.

It is far from being clear that the above definition will assign the same paraMetey every
coordinate system satisfying our requirements: if that is the case, to prove such a statement one
might perhaps need to further require that the coordinate derivatives of the coordinate components
of g in the above described coordinate system have some appropriate decay properties; further one
might perhaps have to replace thél)’s by o(r ~?)’s or O(r ™~ ?)’s, for some appropriate’s,
perhaps as iiflll.41); this is however irrelevant for our discussion at this stage.

A possible justification of this definition proceeds as follows: wRAbh=S? and A=0 it is
widely accepted that the massDf,; equalsm, becausen corresponds to the active gravitational
mass of the gravitational field in a quasi-Newtonian linfiit.is also known in this case that the
definition is coordinate independefit For A+#0 and/or?M#S? one callsm the mass by
analogy.

Consider, then, the metri¢ll.33), with V andg as in(ll1.43)—(111.44); suppose further that
the limit

Moo= lim u

r—o

exists and is a constant. To achieve the form of the métyiust described one needs to replace
the coordinate of (111.43)—(11l.44) with a new coordinate defined as

124 k=p2tk+ 2
p
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This leads to
2 2 -1
4g— _| P AP M 1 2
g (|2+k+ 5 dt°+ |2+k+ 5 +O(p2 dp
+0(p~3)dp dxP+ (p2hag+O(p~ 1)) dx  dx, (V.3)
and therefore
M I3 9R’
Me= = = x| V4

where the second equality above follows fr@ith.46). We note that the approach described above
does not give a definition of mass when lim,x does not exist, or is not a constant function on
Fos2..

The above described dogmatic approach suffers from various shortcomings. First?Mhen
#+S?, the arguments given are compatible Wit being any functiorM .(m,A) with the property
that M;(m,0)=m. Next, the transition from\ #0 to A=0 has dramatic consequences as far as
global properties of the corresponding space—times are concerned, and one can argue that there is
no reason why the functioM(m,A) should be continuous at zero. For example, according to
Ref. 27, Eq.(1ll.8¢c), the mass of the metrid.1) with 2M =S? should be 16ml, with | as in
(1.9), which blows up when\ tends to zero withm being held fixed. Finally, whefM # S? the
Newtonian limit argument does not apply because the meiritswith A =0 and®M # S? do not
seem to have a Newtonian equivalent. In particular there is no reasoiyishould not depend
upon the genus., of 2M as well.

All the above arguments make it clear that a more fundamental approach to the definition of
mass would be useful. It is common in field theory to define energy by Hamiltonian methods, and
this is the approach we shall pursue in the next section.

B. The Hamiltonian mass My m

The Hamiltonian approach allows one to define the energy from first principles. For a solution
of the field equations, we can simply take as the energy the numerical value of the Hamiltonian.
It must be recognized, however, that the Hamiltonians might depend on the choice of the phase
space, if several such choices are possible, and they are defined only up to an additive constant on
each connected component of the phase space. They also depend on the choice of the Hamiltonian
structure, if more than one such structure exists.

Let us start by briefly recalling the results of the analysis of Ref. 59, based on the Hamiltonian
approach of Kijowski and Tulczyje®? % see also Ref. 62. One assumes that a manifbldn
which an(unphysical background metrid is given, and one considers metritgs which asymp-
tote tob in the relevant asymptotic regions bf. We stress that the background metric is only a
tool to prescribe the asymptotic boundary conditions, and does not have any physical significance.
Let X be any vector field oM and letX be any hypersurface il. By a well known procedure
the motion of2, along the flow ofX can be used to construct a Hamiltonian dynamical system in
an appropriate phase space of fields a¥ethe reader is referred to Refs. 60—63 for a geometric
approach to this question. In Ref. 59 it is also assumed Xhet a Killing vector field of the
background metric; this is certainly not necessaify, e.g., Ref. 63 for general formulasut is
sufficient for our purposes, as we are going to txki® be equal ta)/dt in the coordinate system
of Eqg. (I11.33). In the context of metrics which asymptote to the generalized Kottler metrics at
larger, a rigorous functional description of the spaces involved has not been carried out so far,
and lies outside the scope of this paper. Let us simply note that one expects, based on the results
in Refs. 41, 42, and 63, to obtain a well-defined Hamiltonian system in this context. Therefore the
formal calculations of Ref. 59 lead one to expect that on an appropriate space of fields, such that
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the associated physical space—time metticasymptote to the background methat a suitable
rate, the Hamiltoniatd (X,2) will coincide with (or, at worse, will be closely related)tthe one
given by the formula derived in Ref. 59:

H(x,2)=1 U*fdsS,,, (V.5)
2 Jss B

where the integral over> should be understood as the limitRgends to infinity of integrals of
coordinate spherets=0, r =R on 2,;. HeredS,; is defined as

d

_ dxOA\---Adx"

with _ denoting contraction, antd®? is given by

U=u" xﬁ+—(\/ |detg,,, 91"~ \detb,,[b*l") SHXP. ., (V.6)
2|detb,,,|

U= nv e2 ylvyN & e V.7

B —1 |detg,w| gs,(e°g”"g™"). (V.7)

Here, andthroughout this sectigng stands for the space—time metfig unless explicitly indi-
cated otherwise. Further, a semicolon denotes covariant differentiatibrrespect to the back-
ground metric b while e= \|detg,//\/|detb,,|. Some comments concerning E.6) are in
order: in Ref. 59 the starting point of the analysis is the Hilbert Lagrangian for vacuum Einstein
gravity, L= \/—dethV(g“[’Raﬁll&r). As the normalization factors play an important role in giv-
ing a correct definition of mass, we recall that the factor #/16 determined by the requirement
that the theory has the correct Newtonian lifuinits G=c=1 are used throughoutWith our
signature - + + +) the Einstein equations with a cosmological constant read

apB
g RaB
R/.LV_ g,uv _Ag,uvv

so that one needs to repeat the analysis in Ref. 59 with replaced by
(V—detg,,/16m) (g“BRaB—ZA). The general expression for the Hamiltoni@n5) in terms of
X*, g,,, andb,,, ends up to coincide with that obtained with=0, which can be seen either by
direct calculations, or by the Legendre transformation arguments of Ref. 59, end of Sec. 3,
together with the results in Ref. 62. Note that B¢.6) does not exactly coincide with that derived
in Ref. 59, as the formulas there do not contain the terrf detb, /b ”5“XB However, this
term does not depend on the metggc and such terms can be freely added to the Hamiltonian
because they do not affect the variational formula that defines a Hamiltonian. From an energy
point of view such an addition corresponds to a choice of the zero point of the energy. We note
that in our contextH(X,X) would not converge if the term- \/|detbp(,|b“["5glxﬁ;a were not
present in(V.6).

In order to apply this formalism in our context, we ketoe anyt-independent metric oM
=RX3 such that(with 0# A= —3/2)

2

.
k72

-1

dt’+ dr2+r2nh (V.8)

r2
b:—(k+l—z

ONRX S o= RX[R,) X 2M, for someR=0, whereh=h,g dx" dx® denotes a metric of constant
Gauss curvaturk=0,*=1 on the two-dimensional connected compact manifdid

Let us return to the discussion in Sec. V A concerning the freedom of rescaling the coordinate
r by a positive constant. First, if k in Eq. (V.8) is any constant different from zero, then there
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exists a(unique rescaling ofr andt which bringsk to one, or to minus one. Next, K=0 we
can—without changing the asymptotic form of the metric—rescale the coordirtatea positive
constant\, the coordinate by 1/, and the metridy by A ~2, so that there is still some freedom

left in the coordinate system above; a unique normalization can then be achieved by asking, e.g.,
that the area

szf d?up, (V.9)
2M

equals 4r—this will be the most convenient normalization for our purposes. s, is the

Riemannian measure associated with the métri®Ve wish to point out thategardlessof the
value ofk, the HamiltoniarH (X,Y) is independenbf this scaling: this follows immediately from
the fact thatJ*# behaves as a density under linear coordinate transformations. An alternative way
of seeing this is that in the new coordinate sysiemquals\ d/dt, which accounts for a factor 1/
in the transformation law of the coordinate mass, as discussed at the beginning of Sec. VA. The
remaining factor V2 needed there is accounted for by a change of the argafunder the
rescaling of the metri&r which accompanies that of

In order to evaluatéd it is useful to introduce the followingp-orthonormal frame:

2\ —1/2

dy, e€1=

r

IH O, €A=—%, (V.10)

wheregj is an ON frame for the metrib. The connection coefficients, defined by the formula
Ve,€5= wpaet, read

r r2 —-1/2 1 r2 1/2
wo10= |—2k+|—2 y W12 W133= — k+|—2 )
coth@
r 1 - H]
w333=4¢ 0, k=0, (V.11
coto
—-—— k=1

Those connection coefficients which are not obtained from the above ones by permutations of

indices are zero; we have used a coordinate sy#tenon 2M in which h takes, locally, the form
d 6%+ sint? d¢? for k= —1, d6?+de? for k=0, andd 6%+ sir? 6d¢? for k=1. We also have

b L o1 e xO—x0— sy o
X - k+ I_Z:T+O(r ), el(X ):X ;1:_X0;1:Xl;O:|_2’ (V12)
all the remainingxf“s andX; ;'s are zero. Let the tensor fielet"” be defined by the formula

e (V.13)
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We shall use hatted indices to denote the components of a tensor field in theeffalefned in
(V.10), e.g.,e?® denotes the coefficients ef*” with respect to that frame:

e"’d,®d,=e*e;@e;.

Suppose that the metritg is such that thee?®’s tend to zero as tends to infinity. By a
Gram—Schmidt procedure we can find a frafge a=0,...,3, orthonormalvith respect to the
metric g, such thatf, is proportional toey, and such that the; components ofy—eq,..., f3
—e3 tend to zero as tends to infinity:

f5= f’ééeéH oo 5285 . (V.l4)

From (V.5) and(V.14) we expect that

H(X,3)= lim f 20102, | (V.15)
SN{r=R}

R— o

whered?u, is the Riemannian measure induced®n {r =R} by *g. We wish to analyze when
the above limit exists; we have

3
~An ~An ~ r An
rzUmBXB: rzUloaxo% I_U10~ ,

hence we need to keep track of all the termﬁ‘»an% which decay as 2 or slower. Similarly one
sees from Eqs(V.12) that only those terms in

A%= | detg; ;g% — V]detb, ;b

which areO(r ~3), or which are decaying slower, will give a nonvanishing contribution to the
term involving the derivatives oX in the integral(V.15). This suggests to consider metrit
such that

e[/,f/:O(r—:S/Z), ei)(e,[/«;’)zo(r_:glz)_ (Vl6)

The boundary conditionév.16) ensure that one needs to keep track only of those term&%n
which are linear ine*” ande,(e*"), whenU1° is Taylor expanded arountol For a generalized
Kottler metric(l.1) we have
an o an 2 - 22 6ml
eV~ell~— T ej(e?)~ej(elh)= -3 (V.17)

with the remainingaf‘;”s ande;,(ef‘;’)’s vanishing, so that Eq$V.16) are satisfied. Undgiv.16)
one obtains

Gac= mac— 7a mese >+ o(r %), \[detg,,, [ = V[deth,, [(1+ 4(e%—ell—e*) +o(r %)),
(V.18)

~n 1 an ~n
U10%=— To-(2ei+ el';—e%. ) +o(r 3

o 1 A ~n 1\( ~n
_ S(ePAY 4 T (ePA_oplly_ T H-plA| 4 -3
16 ei(e™) I(e 2e) rDAe o(r—s),
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1

oo 1
af[ly0] _—
877'A X 16

T

~An ~n ~ r‘ PPN PPN
(All_AOO)XO;A:l%l (All—A00)+o(r_3)

r PPN
=167 eM+o(r3). (V.19

The indicesi run from 1 to 3 while the indiced run from 2 to 3;D4 denotes the covariant
derivative on?M, andDae'” is understood to be the covariant derivative associated with the
metric h of a vector field on®M, with repeatedA indices being summed over. In E€V.18)
n;;=diag(-1,+1,+1,+1), while theg;;’s are the components of the tenggy; in a co-frame
dual to(V.10). Inserting all this into(V.15) one is finally led to the simple expression

3 AA

1% r an
—H|l = ft=0 = |i _9all
MHam_H(at'{t 0}) le_zlf I 2e

d?uy . (V.20)

r
Eﬁ{r—R}( ar
In particular if*g is the generalized Kottler metri¢.1) one obtaingcf. Eq. (V.17)]

A.m
M Ham™ 7 (V.21)

A.. defined in(V.9). If 2M =T? with area normalized to # we obtainM;,,=m. Fork=+1 it
follows from the Gauss—Bonnet theorem that=4mx|1—g..|, whereg.. is the genus ofM,
hence

Miam=[1—g.|m. (V.22

This gives agairM ,m=m for 2M =S?, but this will not be true anymore fctM’s of higher
genus. We believe that the Hamiltonian approach is the one which pravidesrrect definition
of mass in field theories, and therefore E§621)—(V.22) are the ones which provide the correct
normalization of mass.

Let us finally consider static metriég of the form(I11.33), and suppose that the hypotheses
of point (2) of Proposition IIl.7 hold. We can then use the coordinates of that proposition to
calculateM y,,, and obtain

1
Myam= — Ry j& E/-l’oo dzﬂﬁ . (V.23)

o

If we further assume that., is constant or..2, Eqg. (V.23) gives

,u/oc
MHam:_7:Mc

for 2M =S? and for an appropriately normalizéd, while

oo
MHam:_|l_QW|7:|1_gw|Mc

for higher genus..X’s. HereM. is the coordinate mass as defined in Sec. VA.

C. A generalized Komar mass

Recall that the Komar mass is a number which can be assigned to every stationary, asymp-
totically flat metric the energy-momentum tensor of which decays sufficiently rapidly:
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1
Mg = Iim—J V|detg,4|V#X"dS,,, (V.24)
8m Sr,T

R

whereX*4,, is the Killing vector field which asymptotes @4t in the asymptotically flat region,

and theSg r={t=T,r=R}’s are coordinate spheres in that region. The normalization factor
1/(87) has been chosen so thit, reproduces the familiar mass parameatewhen Schwarz-
schild metrics are considered. For metrics considered hereAw#B the integralV.24) diverges
whenX*g,=dldt and when theSg 1's are taken to be coordinate spheres in the regigawhere

the metric exhibits the generalized Kottler asymptotics. An obvious way to genekéjiz® the
situation considered in this paper is to remove the divergent part of the integral using a back-
ground metrich:

1 _
M= lim =— (\/|detgaB|V”“XV— \/|detba3|V”“XV)dS#,,. (V.25)
SR,T

RO

HereV denotes a covariant derivative with respect to the background metric. More precisely, let

extr Dy h, etc., be as in Eq(V.8), and consider time-independent metrigswhich in the
coordinate system of EqV.8) are of the form(l11.33) with

1 e . 2 1
), (?r<V2_I—2_k+TB

r

2
r< . 2
szl—z‘f’k—TIB'f'O

r

1 ~ 2
:O(r_z)’ g = I2+k—Ty+o

Vv |detgaﬁ| =

%) ) V|dethagl, (V.26)

r2+T+o

for somer-independent differentiable functioks=K(x*), B=B(x"), y=y(x*), and 5= 8(x*)
defined on a coordinate neigbhorhoodiQE.. [ The conditiongV.26) roughly reflect the behavior
of the metric in the coordinate system of Proposition Ill@nder(V.26) the limit asR tends to
infinity in the definition(V.25) of My exists, and one finds

1
M= lim — (Vldetg . 5l9"#9"d;,9,;:— Vldetb, glb b b, dx? dx®
Sr,T

R AT

1
= lim=— (V]detg, 59" 9" 9,9y — V|detb, g[b" b" g, by) dxPdx®
SpT

RO

R _ 2~
i ), (382720 ;. (V.27)

It turns out that the value dMy so obtained depends on the background metric chd€aum
definition of background, EqV.8), is tied to the choice of a particular coordinate system, so
another way of stating this is that the numibég as defined so far is assigned to a me#ia to

a coordinate system, in a manner somewhat similar to the coordinate mass of S¢dndead,
given any differentiable functiom(x?) there exists a neighborhood 63 on which a new
coordinatef can be introduced by the formula

= . (V.28)

We can then choose the new background to be
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72

P 22
k+ 72

k+ 12

-1
b=— de2+ d#2+72h,

and obtain a newl ¢ which will in generalnot coincide with the old ondlt is noteworthy that the
coordinate transformatiofV.28) with the associated change of backgroundnd change the

value of the Hamiltonian mashl,,,.] For example, ifa is constant, using hats to denote the
corresponding functions appearing in the metric expressed in the new coordinate system we obtain

TaA.,

B=B+a, y=vy+3a, 6=6-2a=M=My— g

whereA,, is the area of,.2 with respect to the metrib. It turns out that one can remove this
coordinate dependence in an appropriate class of metrics, tailoring the prescription in such a way
that Eq.(V.27) reproduces, up to a genus dependent factor, the coordinateNiasis order to

do that we shall suppose that the mefycsatisfies the hypotheses of poigi of Proposition 111.7

(in particulark=k=0,+1 according to the genus of the connected component.&f under
consideratiopy and we let the background be associated with a coordinate sypteft) (with p

given by (111.43). It follows from Eqgs.(V.3) and(l1l.45) that in this coordinate system it holds

Vldetg,4=r?+o

1
F) , (V.29)

where we have used the generic symbab denote the coordinaje We then imposgV.29) as
a restriction on the coordinate system in which the generalized Komar hasdss to be calcu-
lated. When this condition is imposed we obtain fr¢vh3) and(V.23)

1
My =— 8n (9x2#°0d2MF1: Muam-

We have thus proved

Proposition V.1:Consider a metriég satisfying the hypotheses of poift). of Proposition
I11.7, then the generalized Komar ma@4.25) associated to a background metfit.8) such that
(V.29) holds equals the Hamiltonian ma@s.20).

Proposition V.1 is the\ <0 analogue of the theorem of Béigjthat for staticA =0 vacuum
metrics which are asymptotically flat in spacelike directions the ADM mass and the Komar masses
coincide. Our treatment here is inspired by, and somewhat related to, the analysis of Ref. 43.

D. The Hawking mass My, ()

Let ¢ be a function defined on the asymptotic reghbg,, with 2., defined as inV.1), such
that the level sets ofy are smooth compact surfaces diffeomorphic to each diteleast forys
large enough with y—, ... Following Hawking®® Gibbons[Ref. 18, Eq.(17)] assigns a mass
M pan(#) to such a foliation via the formula

VAL, 1, 2
= [i € 2 .22
MHam(t/f)—ilTo W%“LWUE}( R=35p 3A)dA, (V.30)

whereA,, is the area of the connected component under consideration of the leyel-=set}.

By considering simple examples in Minkowski space—times it can be seen that this definition
is s dependent. However, whéivi=S?, A =0, and the coordinate system Bg, is such that the
ADM massmppy (Which equalamy as defined in Sec. VBof 3, is well defined(see Refs. 58
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and 57, thenM () will be independent off, in the class off's singled out by the condition
that the level sets aff approach round spheres at a suitable rate. No results of this kind are known
when A #0.

The definition(V.30) applied to the functions=r and the metriql.1) with k#0 gives

M paw= m| 1- gw|3/2'

We have also used the Gauss—Bonnet theorem to calcylate. Thus the definition(V.30)
differs from the coordinate one by the somewhat unnatural fatterg..|*2 It is not clear why
such a factor should be included in the definition of mass.

Consider, next, the metrig#ll.33) with V andg given by (111.43)—(111.44). Let r=V; from
the Codazzi—Mainardi Eqlll.31), Eq. (1.5), and the definition(111.16) of W we obtain, forV
large enough so thadV|>0,

2 1 2 ini 2
R—Ep —3A=(=2R;+Rgjn'n —laijlg— 3A
D'V DIV , 2
=_2WDiDjV_|qij|g_§A
D'V DWW

2

In the coordinate system of E¢I1.28), whereV=1/x, one is led to

oq Lo 2, W 2 e x3r7R’+O .
ZP T g AT T g AT OO == g O,

and we have usedll.25) and (Il1.15). From Al,ﬁx*ZA(’,mE we finally obtain

M il V f 1R d’u f V.31

whered?u,, is the Riemannian area element inducedgbyon 4..3, andn’ denotes the inward-
pointing g’ -unit normal tod... We have thus proved the following result.

Theorem V.2: Let a triple &,g,V) satisfying Egs.(1.3)—(1.5) be C' compactifiable,i=3.
Then the Hawking mashl (V) of the V-foliation is finite and well defined; it is given by the
formula (V.31), with R’—the curvature scalar of the metmg =V~ 2g.

We can relateV ,,(V) to the coordinate madd . if we assume in addition that the latter is
well defined; recall that this requirdd’ andd,R’ to be constant o@..2.. In this case Eq(V.4)
gives

Ar /2
M pawl( V) = (4 |2) Mc. (V.32

From Eq.(111.20) we have?R’|,_,=2k/I?, and the Gauss—Bonnet theorem implies
271 A2 2k ’
s R d Mh'zl_ZAr?mE:SW(l_gw)’

so that wherg,,# 1 we obtain

M panl V) = 1= 0| ¥M .. (V.33
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We emphasize thatl,,(V) is finite and well defined even when the conditions of Sec. VA,
which we have set forth to defind ., are not met.

Similarly, the Hamiltonian mas$/,,, associated to the background singled out by the
coordinate system of Proposition 1I.7, can be defined wRéris constant ory,.2.. (This holds
regardless of whether or ng{R’ is constant on,.2.) Proceeding as above, making use of Egs.
(11.42)—(111.47), one is led to

9. 7F 1=Mpan(V) = |l_gw|1/2M Ham>
(V.34)
0.=1, Al =4l 2 M na V) =M gam-

VI. THE GENERALIZED PENROSE INEQUALITY

We recall here an argument of Gerochgs extended by Jang and Wafcand Gibbong? for
the validity of the Penrose inequalit§:

Proposition VI.1:Assume we are given a three dimensional manifddg) with connected
boundarydX, such that:

(1) R=20 for some strictly negative constafx
(2) There exists a smooth, global solution of the inverse mean curvature flow without critical
points, i.e., there exists a surjective functior® —[0,) such thatdu has no zeros and

ulx=0,
Viu (VI.1)
Vi ( m) = |d Ul .
(3) The level sets ofl
Ns={u(x)=s}

are compact.
(4) The boundarys =u~%(0) of 3 is minimal.
(5) The Hawking mass of the level sets wfas defined ifV.30) exists.

Then

AaE
2Mpan(U)=(1—9g;s5) V.

3

4

1/2 @ A 3/2
( "2) . (VI1.2)

HereA s is the area 0B andg,s is the genus thereof.

Remarks:(1) The Proposition above can be applied to solutiongld@f) and (1.5) with ©
=A: in this case we hav®=2A; further Eq.(l.5) multiplied by V and contracted with two
vectors tangent t@> shows that the boundafy/= 0} is totally geodesic and hence minimal.

(2) Equation(V1.2) is sharp—the inequality there becomes an equality for the generalized
Kottler metrics.

Proof: Let A; denote the area dfly, and define

1 2
?Ry= 5P 5) d?us, (VI.3)

a(s)=JA_sts

where?R; is the scalar curvature of the metric inducedNy, d?u is the Riemannian volume
element associated to that same metric, pnd the mean curvature dis. The hypothesis that
du is nowhere vanishing implies that all the objects involved are smoogh A&t s=0 we have

o(0)=VAz f&(zRO—%@)dZW VAs(87(1—g,5)— 30A5). (VI.4)
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On the other hand, lig,..0(S) =327%M 4,,(U). The generalization in Ref. 18 of the classical
calculation of Ref. 13 gives

oo 0 VI.5

—=

75 =0 (VL5)
This implies lim,_...o(s)=c(0), which gives(VI.2). O

To be able to carry out the above argument one had to assumeéuthed no zeros, which
implies in particular tha#..2, is connected withy;s =g.. . It is not known whether or not the other
hypotheses of Proposition VI.1, or the conditions of Definition IIl.1 together with E@—(1.5),
force 9% to be connected. If they do not, one is tempted to conjecture that the right inequality
should be

3

iy

A[y.z)l/z 0 (Aﬁ-E 3/2
' - ' ) ) (V1.6)

k
2MHaw(U)>i21 ((1—gaiz)<ﬂ

Here thes;X'’s, i=1,... k, are the connected componentsiaf, A; s is the area of;%, andg, s

is the genus thereof. This would be the inequality one would obtain from the Geroch—Gibbons
argument if it could be carried through fars which are allowed to have critical points, on
manifolds withd,.3 connected bup> not necessarily connected.

We note that whem\ =0 there is a version of the proof of Proposition VI.1 due to Huisken
and limanen in whichdu is allowed to have zeroéwith 33 connectefi®’ Note that at points
wheredu vanishes Eq(VI.1) does not make sense classically, and has to be understood in a
proper way. Further the monotonicity calculation of Ref. 13 breaks down at critical level agts of
as those do not have to be smooth submanifolds. Neverth@leesm A =0) existence of appro-
priate functionsu (perhaps with critical poinjstogether with the monotonicity oé can be
establishetf*®when g3, is an outermostnecessarily connectgchinimal sphere. It is conceivable
that the argument of Huisken and llmanen can be modified to include theAca®e One of the
difficulties here is to handle the possibly changing genus of the level sets of

Let us discuss some of the consequences oftipothetical Eq. (VI.6). To proceed further
it is convenient to introduce a mass parametedefined as follows:

MHawa 0"002:821

Muaw, d.2=T2, with the normalizationA, =41l?,
m= (V1.7)
M Haw

, >1.
mr 9o s

Strictly speaking, we should writa(u) if M y,,(U) is used abovan(V) if My,(V) is used, etc.;

we shall do this when confusions are likely to occur. For generalized Kottler metrics the mass
m=m(u) so defined coincides with the mass parameter appeariiiiglinwhenu is the radial
solutionu=u(r) of the problem(VI.1); m(V) coincides with the coordinate mas4; for the
metrics considered here whé#, is defined, cf. Eq(V.32).

Note, first, that if all connected components of the horizon have spherical or toroidal topology,
then the lower bounéV1.6) is strictly positive. For example, #3 =T?, andd..> =T? as well we
obtain
1 Aﬁ2 3/2

On the other hand, i#3 =T? butg, s>1 from Eq.(VI.6) one obtains
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) 1 AﬁZ 3/2
= =
=129 =1 | 47

Let us return to the case where E@s3)—(1.5) hold®® we can then use the Galloway—Schleich—
Witt—Woolgar inequalit§}

k
;l 953 =<0 (V1.8)

It implies that if 9.2 has spherical topology, then all connected components of the horizon must
be spheres. Similarly, if..2, is a torus, then all components of the horizon are spheres, except
perhaps for at most one which could be a torus. It follows that to have a component of the horizon
which has genus higher than one we nged-1 as well.

When some—or all—connected components of the horizon have genus higher than one the
right-hand side of Eq.VI1.6) might become negative. Minimizing the generalized Penrose inequal-
ity (VI.6) with respect to the areas of the horizons gives the following interesting inequality:

1
M =— —1/32 V1.9
Haw(U) 3H§|: |gﬁi2 | ( )

where the sum is over those connected componght®f ¢2 for which 9ss=1. Equation(VI.9),
together with the elementary inequalBf’ ,|\;|¥?<(=]_,|\])%? lead to

1

S 3J-A

m=

(V1.10)

The Geroch—Gibbons argument establishing the inequait¢) when a suitable exists can
also beformally carried through whe@X =. In this case one still considers solutiom®f the
differential equation that appears in E§/1.1), however the Dirichlet condition on at % is
replaced by a condition on the behaviorwohear some chosen poipge 2. If the level set ofu
aroundp, approach distance spheres centerqul it a suitable rate, them(s) tends to zero when
the Ng's shrink to py, which together with the monotonicity aof leads to the positive energy
inequality:

M i U)=0. (VI.11)

It should be emphasized that the Horowitz—Myers solufibnsth negative mass show that this
argument breaks down whey,=1.

When d,.3 =S? one expects thatvl.11), with M, (u) replaced by the spinorially defined
mass(which might perhaps coincide withl,,,(u), but this remains to be establishedan be
proved by Witten-type techniques, compare Refs. 24 and 25. On the other hand it follows from
Ref. 26 that whe..3 # S? there exist no asymptotically covariantly constant spinors which can
be used in the Witten argument. The Geroch—Gibbons argument has a lot of “ifs” attached in this
context, in particular ifs,.3 # S? then some level sets af are necessarily critical and it is not
clear what happens with- when a jump of topology from a sphere to a higher genus surface
occurs. We note that the area of the horizons does not occly1ih0) which, wheng, s>1,

suggests that the correct inequality is actuélfy.10) rather than(VI.11).
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VIl. MASS AND AREA INEQUALITIES

A. Preliminaries

Let (2,9,V) satisfy (1.3)—(1.5) together with the topological, the differential, and the
asymptotic requirements spelled out in the statements of Theorems 1.3 @enma VII.3 below
actually holds under more general conditioiwe first introduce the surface gravikyof 9% to be
the corresponding restriction of the functiiwV defined by(I11.16):

Kk=[dV]g|,s, (VIL.1)

where we have normalize® so that Eq.(111.21) holds, cf. Proposition IIl.3. By the strong
maximum principle(Ref. 69, Lemma 3.4W is nowhere vanishing oAX. Moreover, it is well
known[and easily seen using E(.5)] that « is locally constant o@%.:

. Div 1
0=n'D;D;V|y-o=—=D;D;V|y-o= —=D;iW|y_o. (VI1.2)

VW 23w

Heren' is the unit normal ta73,, whereV vanishes. It is convenient to introduce the notion of a
reference solutiofiRS): this is a generalized Kottler solution with the same gegss ,9,V).
Moreover, if92 # &, the surface gravityk of the RS is chosen to be equal to the maximum of the
surface gravities ofY,g,V). On the other hand, i§X =¢J, the mass of the RS will be specified
suitably below, in the proof ofl.3). It should be stressed, that we aret comparing manifolds
and/or metrics, but we are only using the resulting scalar funcbaad W:

We only consider RS with massg, in the rangg(ll.6) (if 9=+ J, this property follows from
the restriction(1.7) on «). Letr(-) be the functionvy—r(V,) constructed at the end of Sec. Il,
composing with V we obtain functions (V(-)) andWy(r(V(-))) defined on%. By an abuse of
notation we shall still denote those functions toand W, .

Remark:In the same manner, we can define a RS from other solutions with the property that
W is a function ofV only. (In Lemma VII.3 below we will also include the Nariai case.

Following Ref. 70 we defing/(V) to be that unique solution of the equation

dy Mo
71—:— 12
P = VW (VIL.3)

which goe$! to 1 asV goes tox. (In particularyy=1 whenmy=0.) Herer =r(V) is again the
function defined at the end of Sec. Il. Standard results on ODE’s show that solutidvt.8%
have no zeros unless identically vanishing, and that

W=V
can be extended by continuity to a smooth functionS_QrTstiII denoted by, which satisfies
v>0, V[, =1
We also define
T =V Wiy, W=r4w, We=v*w,. (VIL.4)

We proceed with a computation which is required in Lemma VII.1 as well as in Lemma VII.2.

Consider a level sdtvV=cons} of V which is a smooth hypersurface ¥y with unit normaln;,
induced metrich;; , scalar curvaturér, second fundamental form; defined with respect to an
inner pointing normal, mean curvatupge=h"p;; ; we denote byg;; the trace-free part op;; :
gij = pij — zhijp. Using Eq.(I1.4), the Eq.(1.4) with g=go andV=V,, together with the relation
dVy/dr = fv‘\/_o/v0 we obtain
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dWO 2A 4mg Vil

av o 3h T (ViL.5)
To obtain(VII.6) we use, in this order, the definitiogll.4), the Eqs(1.4)—(1.5), Egs.(VII.5) and
(VII.3), and the Codazzi—Mainardi equation:

dW, dw
V- IWID'VD(W—Wy) =V~ 'W D'V(D;W) -V~ d—v—vlqud (W—W,)
2 dmg  4mg
=(2R;;— Rg,J)n n'+3A+ -3 (1-Wy w)

) 1,02 4mg  4mg 1
=—"R=qq+ 5P+ A+ —z — 3 (1-Wy "W). (VIL.6)

Lemma VIl.1:Under the conditions of Theorem 1.1, suppose further that the scalar curvature
R’ of the metricg’ =V~ 2g is constant ory,.S. Let V be normalized so th&tll.21) holds, with
AL =4ml? wheng.S =T2. If mis the Hawking mass parameter defined agvh7), then

j (A \\ 4l 2A 2 ’
D (W-Wp)dS'=—| 5| A} s(m—mp), (VII.7)

3

wheredS'' denotes the outer-oriented area element of the mgtricV ~?g, andA{;wE is the area
of 4., with respect to that metric.

Proof: Using
D'i(\7v—\7v0)nf=LD-(\7V—\7VO)Div (VI.8)
i /—W, i .
and (VII.6), the left-hand side ofVIl.7) reads
VW[ L1 4me  4mg o | oo
L Nl R0+ 5p%+ 5 A + -3~ 3 (1= Wo 'W) | dPug, (VILO)

where dz,u,g/ is the two-dimensional surface measure associated with the ntgtri€hasing
through the definitions one finds thed\/ VW' ~ /= (A/3)V° nears..S. From the definition of
V, we further have ~ \/— (3/A)V, again neap..3, so that limy,_... VW/(VYW'r%) =(—A/3)%. It
follows that the second to last term (W11.9) gives a contribution

2A\?
? Agxzmo, (VlllO)

whereA[’,w2 denotes the’ area of the connected componentsg® under consideration. Equa-
tion (111.15) and its equivalent withV replaced byw, show that (W, W) —_...0 so that the
last term drops out fromVIL.9). Furthermore, by Eq(lll.25) we have (/\7V/\/W’)qijqij

=0(V~%—y_.0, and it remains to analyze the contribution-e% W(*R— p?— 2A)/ W' to
the integral(VII.7). To do this, note that

AuEANV =1 = | g [ Vg,

wheredz,ug is the induced measure @n 3 associated with the metrig. It follows that
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VW 2 1, zA i
Tl R et e

Al 1 2
T 2p_ T2 2 2

3Ef'=e< R 2p 3A)d Ha

A Al/e 2 1 2 2 2 2A ’ 4
~—V‘§\/@f,=e( R=3P =3 | g 0| 57| Apsm

(VI1.11)

where

1 AA) s\
m=Ilim -

3

VA

1 2
e (2R— =p?— —A)dA. (VI.12)
(V="1/e} 2 3

GHOZ

To finish the proof we need to show thatin (VI1.12) is indeed the Hawking mass as defined in
Eqg. (VL.7). In the torus case this follows immediately from the normalization condifign
=4l?; for the remaining topologies this can be seen as followd/ s normalized so that
(11.21) holds, then(l11.20) implieSR’|,—o=— 3Ak. Wheng..#1 the Gauss—Bonnet theorem
gives

Bri1-g.l=| [ 2R dug| =~ 1Ay s,
which shows that the mass defined by B¢ll.12) coincides with that ofVI.7). O
For the subsequent lemma, recall from Theorem 1.3 that refers to the component &
with the largest surface gravity.
Lemma VII.2:Under the conditions of Theorem 1.1, we have

Aalz
(9ss—1)— A (9-—1)|. (VI1.13)

f W V2B, (W~ Wy dE = 8
013

Proof: We integrateg(VI11.6) over d,2. We note that Eq(l.5) multiplied by V and contracted
with two vectors tangent t@X shows thatdX is totally geodesic; equivalentlyg;;=0. We
introduce2R0=§A+(4m0/r8), the scalar curvature of the metr(itﬂﬁ. Using (VII.6) and the
Gauss—Bonnet theorem, the left-hand sidé\df.13) can be written as

2 am,
f R+ A+ —5 dAzf (—*R+?Ro)dA=87(g, s — 1) +*RoA; s -
012 3 o 012 ! !
(VI1.14)
Equation(VIl.13) is then obtained by eliminatingR, from (VI1.14), using the Gauss—Bonnet

theorem for the generalized Kottler metricss@— g..) =2RoA,. O

The following elliptic equation folV—W, will be the crucial ingredient in the proof of the
theorems. It is also useful for Lemma VII.3.

(A—a)(W—Wy) = W R Rk + 3W 1D, (W—Wy) D' (W— W), (VII.15)

with
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5 .
a=33 moA VAW, 2W, (VI1.16)

A being the Laplace operator of the mefdig, andﬁijk—the Cotton tensor @§;; . This equation
is obtained by specializifgEq. (V.4) of Ref. 70(which has been used in that paper in the context
of a uniqueness proof for static perfect fluid solutipts the present case with#p=—87xp
=A.

It is important to stress that EqVII.15), as it stands, makes only sense on the{s&t
# 0}, because of the factol& ! appearing there. However, it follows from E@.4) that the set
{dV=0} has no interior: indeed, il V vanishes on a connected open set tiiea constant there,
which is compatible with Eq(l.5) only if V vanishes there. This contradicts our hypothesis¥hat
vanishes only o@,. Hence Eq(VI1.15) holds on an open dense sethfSince the left-hand side
of Eq. (VII.15) is a smooth function o&\d2,, the right-hand side thereof is smoothly extendible
by continuity to a smooth function oB\d%,, and Eq.(VII.15) holds everywhere on this set with
the right-hand side being understood in the sense explained here.

Lemma VII.3:Let A € R, and let &,9,V) be a solution of1.3)—(1.5) such that

(@ eitherw=W, for W, defined from the generalized Kottler or from the Nariai solutib®),
or
(b) (X,9) is locally conformally flat.

Suppose further thal is a union of compact boundary-less level set$/ofThen

(1) Every connected componei of the set{pe 2 |dV(p)+0} “corresponds to” one of the
generalized Kottler solution@.1), or to one of the generalized Nariai solutidih®), or is flat.
More precisely, there exists an internvAat R, a two-dimensional compact Riemannian mani-
fold (°M ,dQﬁ), with dQﬁ an (r-independentmetric of constant Gauss curvatke0,+ 1,
and a diffeomorphismy: V—JX?M such that, transporting andV to JX2M using ¢, we
have:

(i) Either there exists a constant-0 such thatv=AV, and
2m A

9=V, 2dr2+r2d02, reJ, v?,:k—T— 3r2, (VI.17)
(i)  or, whenkA >0, there exists a constahte R (A>0 if A>0) such that
g=V2dZ+|A|71dO, zed, VP=A—AZ, (VI1.18)
(iif)  or, whenk=A =0, there exists a constant>0 such thatv=\z and
g=dZ+d02, zeJ. (VI1.19)

(In each case the intervalis constrained by the condition thdtandV? be non-negative

(2) Under condition(a). above, ifX is connected and WV, (considered as a function &) has no
zeros in the interval wher¥ takes its values,

VpeS Wy(V(p)#O0, (VI1.20)

thenV=3, thus Eqs(VII.18) or (VII.17) hold globally onX.
Remarks:

(1) Here we do not make any hypotheses on the sigh.of

(2) The result is local, in particular it is sufficient to be able to invgltV,) locally on the range
of the values oV under consideration to obtaiWy(V).

(3) The set §,g,V) corresponding to the metrig/11.19) arises from a boost Killing vector in
suitably identified Minkowski space—time.

(4) We note that the séf could be empty, as is the case oK T2 with the obvious flat metric.
Our analysis does not say anything about the metric on regions wihéx@nishes.
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(5) We note that the generalized Kottler and the generalized Nariai metrics also arise naturally in
the generalized Birkhoff theorem, see Refs. 73 and 74, and also Ref. 75 for a very clear
treatment in theA >0 case.

(6) The lemma can easily be reformulated by taking any conformally flat soluti¢indof(1.5) as
a reference solution. The condition of conformal flatness is required to ensur@/thab)
holds and excludes, in particular, the Horowitz—Myers solutions with a toroidédRef. 23
as RS.

Proof: The proof is an adaptation of an argument of Ref. 76 to the current setting. Suppose
that W= W, for someW,; Eg. (VI1.15) shows then thaR;; R vanishes, so thay{,qg) is locally
conformally flat. It then follows that conditiotb). holds in both cases.

We start by removing front, some undesirable points: set

3ng={peX|the connected component of the def|V(q)=V(p)} containing
p contains a pointr such thatdV(r)=0l},

3/ EE\ESmg.

2sing IS @ closed subset i, so thatX’ is still a manifold. It follows from Sard’s theorem that
3"+ . We note tha’ still satisfies all the hypotheses of the lemma, except perhaps for being
connected. By construction all the level sets\bfare noncritical in%,’. (Recall that a level set
{V=c} of V is noncritical ifdV is nowhere vanishing of\V=c}.)

Let/ to be any connected componentf. Compactness of the level sets\bimplies’” that
U is diffeomorphic tol X2M, for some two-dimensional compact connected manifditl and
some interval CR, with V equal toc on{c}x?M, cel, and that ori{ the functionV can be used
as a coordinate. Further we can introduce % a finite number of coordinate patches with
coordinatesx’, A=1,2, so that ori{ the metric takes the form

g=W 1dV?+h,gdx*dxB. (VIL.21)

Let, as beforegg dx* dxB be the trace free part of the extrinsic curvature tensor of the level sets
of V—in the coordinate system @¥11.21)

Npg EhCD dhcp
oV 2 oV

qas= \/V_V

hag|. (VI1.22)

Equations(VI1.22) and (111.23) imply that g vanishes hencéh,g/dV is pure trace, thawv
=W(V), and that dey,g is a product of a function oV with a function of the remaining
coordinates. We thus have

h=W(V) 1dV2+r(V)2dQ? (VI1.23)

for some positive functiom(V), wheredQ? is aV-independent metric ofiM. Next, from(1.5)
and from the Codazzi—Mainardi equatiof\dl.24),

Ri,=—Djp'+Dyps=—3D;p’ + D’ (VI1.24)

[here we are using the adapted coordinate system ofl[EG8) with x*=x and with the indices
a,b=2,3 corresponding to the remaining coordinates; furibedenotes the Levi—Civita deriva-
tive associated with the metrit' ], respectively(11.31), applied to?M C#/, we find that the mean
curvaturep of all level surfaces, respectively, their Ricci scalars, are constant. Hént@ (?)

is a space of constant curvature, and scalingppropriately we can without loss of generality
assume that the Gauss curvatlref the metricd()? equals 0+ 1, as appropriate to the genus of
2M. We define
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L= aw 2AV VII.25
dv * ' (V11.25)
Evaluating(l.4) for the metric(VI1.23), we find

dr_ rL

=" W (VI1.26)

Equations(l.4)—(1.5) for the metric(VI1.23) are equivalent tqVII.25)—(VII.26) together with

k L
2Wi A—r—2 =L v*lw—g , (VI1.27)
W L—3|_2 VIW—-AV)L VII.28
av -zl —AV)L. (V11.28)

These equations arise, e.g., by adapting E8sL6 and (3.17) of Ref. 70 to the present case
(namely by setting &p=—8mp=A, L;=L and C?=k, and allowing the constark to take
negative values Suppose, first, that there exists such that (V, )=0. Equation(V1l.28) shows
then thatL=0, and from(VIl.27) one obtains

k

A= (VI1.29)

If k=0 then A vanishes as well; further is constant by Eq(VIl.26) and can therefore be
absorbed intalQ)?. Integrating Eq(VI1.25) one finds that there exists a strictly positive constant
\ such thatW=\?, defining a coordinate by the equatiorz=V/\ proves pointiii) on{. Next,
if k+0 Eq.(VIl.29) giveskA>0 as desired, together wittf=— 1/ A|. Integrating Eq(VI11.25)
one obtaindV= A (A —V?), for some constark € R. Introducing the coordinate via the equa-
tion V2= — A z? establishes pointlii). on /.

In the case ofL without zeros we obtain, fromVII.25), (VII.26), and (VII.28), that
(d/dV) (VyWIrL) =0, which implies that there exists a nonvanishing constastich that

W

L=aVT\/—. (VI1.30)

Using (VII.26) one is led to
dV_ 4\/\/—\/ VII.31
ar = eV (Vil.31)

Next we define
Ar3

m(V)=—%r2\/V—V+T; (VI1.32)

from (VII.25), (VI1.30), and(VII.31) we obtaindm/dV=0, i.e.,m is a constant. Equatio{v11.27)
gives V2= (16/a?) [k—(2m/r) — (A/3)r?]. Equation(VIl.26) shows that we can use as a
coordinate, and EqVII.31) implies that the metric is of the desired for(vll.17). This estab-
lishes point(1i) on .

Let V be the connected component{afV+ 0} C2, that containg/. To establish pointl) of
the lemma we need to show that/. We claim that/ is open inv—and hence irt—which can
be seen as follows: Legpel/, we thus havedV(q)#0 for all g such thatV(p)=V(q). By

Downloaded 11 Apr 2001 to 193.52.214.71. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



1814 J. Math. Phys., Vol. 42, No. 4, April 2001 P. T. Chrusciel and W. Simon

Eq. (VI1.23) |dV|g= JW is constant on the intersection withof the level setv~—*(V(p)) of V
throughp, so that inf-1(y(p))nuldV|q> 0, which easily implies that all nearby level setgda .’
are noncritical.

Let us show now that/ is closed inV. To see that, consider a sequemge I/ such thatp;
—peV. By definition of V the function|dV|, has no zeros oV, hencedV(p)+#0. Now it
follows from (I11.23) that|dV/|q is locally constant on smooth subsets of level set¥ ofvhich
easily implies(a) that the connected component\6f 1(V(p)) containingp is smooth andb) that
|dV]|4 is nowhere vanishing there. Compactness of the level satsrplies that all the connected
components of level sets intersecting a neighborhoqa afe noncritical, and hence aredd. It
then follows thatp € /.

We have thus shown thétis both open and closed i connectedness of shows that/=V,
and point(1) is established.

To prove point(2), we note that the equalityV(p) =Wy (V(p)) together with Eq(VI1.20)
shows thatv has no critical points ox; as2, is connected the séf of point (1) coincides with
3, and point(2) follows from point(1). O

B. Proofs

Proof of Theorem 1.3Suppose that> =J. We first consider as RS a generalized Kottler
solution withm=0 [see Eq.Il.5)]: This leads to

- A,
V=1, Wo(Vo)=—5 (VoK. (VI1.33)

We further normalize/ as in Proposition 111.3, so that bftl1.15), (111.19), and(lll.21) we have

W—Wy—,_...0. (Actually whend,.3 =T?, the normalization of/ does not play any role, as we
make claims only about the sign of in this case. Equation(VIl.15) together with the maximum
principle shows that

W-Wy<0 on 3, (VI1.34)
n''D; (W—-Wp)|, =0, (VI1.35)

wheren’ is the outer pointing g’ -unit normal tod..>. Further, equality is attained itV11.34) or

in (VI1.35) if and only if W=W, (Ref. 69, Theorems 3.5 and 3.6'hus Lemma VII.1 together
with Eq. (VII.35) shows thaim=0. Assume now tham=0 in the case)..>=S?; as an indirect
argument, we also assume that 0 in the T2 case, or thain=mg; in the remaining cases. In the
sphere or torus case from the strong maximum principle we obtain

W=W,. (VI1.36)

In the higher genus cases we consi@éh.15) again but take here as RS a generalized Kottler
solution with the same mass as the given ang=m. Equations(VI1.34)—(VII.35) hold again;
then Lemma VII.1 shows that equality must hold(Mll.35). Applying the maximum principle
again yields Eq(VII.36). We note that both pointa) as well as the structural hypotheses of
Lemma VII.3 hold under the hypotheses of Theorem 1.3. Equdtth36) and the discussion of
Sec. Il show that poin{2) of that lemma applies, so that the given solution must be a member of
the generalized Kottler family withm in the range(ll.6) (the generalized Nariai metrics are
excluded as they do not satisfy the asymptotic hypotheses of Theorgninl.the cased..>
=$? point (1) readily follows. In the remaining cases none of these solutions has the topology
required in Theorem 1.3, which gives a contradiction and establishes Theorem 1.3. O
Proof of Theorem 1.5By choice of the RS we havé/(— \7Vo)|52=0. We normalize/ again

so that lim...(W—W,) =0 holds, cf. Proposition 111.3 and Edlll.15). Negativity of my implies
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that a in (VII.15) is non-negative. The maximum principle applied to EYll.15) gives W
—W,=<0 on3, with equality being achieved somewhere if and only\#=W,. Moreover, as in
the proof of point(2) the boundary version of the strong maximum princifRef. 69, Theorem
3.6) implies thatn'’ D/ (W—W,)>0 ond..3 unlessW=W,. Lemma VII.1 allows us to conclude
that eitherm<my or W=W,. In that last case poir2) of Lemma VII.3 implies that ¥,g,V)
corresponds to a generalized Kottler solution. In any case there hoids, .

To prove the area inequality {h.8) requires some care as the mefjidefined in Eq(VII.4)
is singular at%, so that standard maximum principle arguments such as Ref. 69, Theorem 3.6 do
not apply. We proceed as follows. By choiceWwf, we havelW=W, on ;3. Further, Eq(VI1.2)
shows than'D;(W—W,) vanishes there. De I'Hospital’s rule, the nonvanishingvfat 43, and
the requirementV—W,=<0 lead to

. I ~ D'V Dj(W—W,)
n'n' D;Dj(W—W,)| s = lim ——————=0.
V—0 \

It follows that the left-hand side of EqVII.13) is nonpositive, which establishes the second part

of (1.8). O
Proof of Corollary 1.6: Assume tha®2, is connected and th&V1.2) holds; we want to show

that(1.8) implies an inequality inverse t/1.2). In order to do this, note first that }.8) the mass

m is nonpositive, and EqVI.2) implies thatg s > 1. It is useful to introduce a genus-rescaled area

radiusr ;s by the formula

Foo— A&E
T Nam(gs—1)

In terms of this object, the inequality¥1.2) reads

2m|g..— 132+ lggs —1]¥%=0. (VI1.37)

A 4
rr72+§rr72

It follows that r ;s + (A/3)r§E>O, and the Galloway—Schleich—Witt—Woolgar inequéligss
<g., implies

A 3
2m 1oy + 5 135>0, (VI1.38)

Let us denote by, ther ;» corresponding to the relevant generalized Kottler solution:

' Van(g, s 1)

The inequality(VI1.38) is actually an equality for the generalized Kottler solutions, therefore it
holds that 2ng+r,+ (A/3)r3=0. We haver,=1/{/— A from (11.8), andm=my, r,s=r, from
(1.8), so that

3

A 3 A 3
2m+r92+—r(,2=2m+r32+—r(,2—2m0—r0—§r0

3 3
A 2 2
=2(m—mg)+(rs—ro)| 1+ §(r02+r52r0+r0)

<(r;s—ro)(1+Ard)=<0. (VI1.39)
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It follows from Eqgs.(VII.38)—(VII.39) thatr ;s =ry, m=mg, and the rigidity part of Theorem 1.5
establishes Corollary I.6. [l
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